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Abstract In this paper a method of approximating the classical LSW model near self-
similar solutions for initial data with infinite support is developed. The resulting problem
is an integrodifferential equation having two time scales that can be studied using multi-
ple scale methods. The analysis provides a detailed description of the precise manner in
which the characteristics “leak” through the critical radius associated to the self-similar so-
lutions. The analysis in this paper makes precise the meaning of the iterated logarithmic
asymptotics in the dynamics of the LSW model that were already obtained in the original
Lifshitz-Slyozov paper. Examples of noncompactly supported solutions of the LSW model
that do not behave in a self-similar manner are also given.

Keywords LSW model · Ostwald ripening · Selfsimilar behaviour · Schwartzian
derivative · Integral equations · Multiple scales analysis

1 Introduction

This paper develops a mathematical formalism that makes possible to describe noncom-
pactly supported solutions of the Lifshitz-Slyozov-Wagner model that behave in a self-
similar manner for long times.

The Lifshitz-Slyozov-Wagner model (LSW) is the following nonlocal system of differ-
ential equations:

∂f (R, t)

∂t
+ ∂

∂R

((
− 1

R2
+ �(t)

R

)
f (R, t)

)
= 0, t > 0, R > 0, (1.1)

f (R,0) = f0(R) ≥ 0, R > 0, (1.2)

�(t) =
∫ ∞

0 f (R, t)dR∫ ∞
0 Rf (R, t)dR

. (1.3)
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These equations are a classical model that describes the last stage of a phase transition
process (Ostwald ripening) for which the small volume fraction occupied by the particles is
preserved (cf. [6, 16]). Rigorous derivations of this system using homogenization techniques
that take as starting point the Mullins-Sekerka free boundary problem have been obtained in
different scaling limits in [3, 7, 8, 11].

It is well known that the system (1.1–1.3) has a family of explicit self-similar solutions
of the form (cf. [6, 16]):

f (R, t) = 1

t4/3
�α(ρ), ρ = R

t1/3
, (1.4)

where α ∈ (0,∞]. The self-similar solutions (1.4) are compactly supported in the variable ρ.

For each given value of the volume fraction
∫ ∞

0
4πR3

3 f (R, t)dR such self-similar solutions
are uniquely characterized by means of their asymptotic behaviour near the maximum value
of ρ that are given by:

�β(ρ) ∼ Lβ(ρmax − ρ)β as ρ → ρ−
max (1.5)

for −1 < β < ∞ and where ρmax := ρmax(β), Lβ > 0. On the other hand, for β = ∞ we
have:

�∞(ρ) ∼ L∞(ρmax − ρ)−1/3 exp

[
− ( 3

2 )2/3

(ρmax − ρ)

]
as ρ → ρ−

max, (1.6)

where ρmax := ( 3
2 )1/3, L∞ > 0. The numerical constants Lβ, L∞ are proportional to the

volume fraction occupied by the particles. In (1.5), (1.6) and in the rest of the paper we will
use extensively the asymptotic notation whose meaning we recall here:

f (x) ∼ g(x) as x → x0 iff lim
x→x0

f (x)

g(x)
= 1,

f (x) � g(x) as x → x0 iff lim
x→x0

f (x)

g(x)
= 0,

f (x) = o(g(x)) as x → x0 iff lim
x→x0

f (x)

g(x)
= 0,

f (x) = O(g(x)) as x → x0 iff
f (x)

g(x)
is bounded near x0.

Global well-posedness of the system (1.1–1.3) for compactly supported initial data has
been proved in [10]. On the other hand, it has been rigorously proved in [9] that the initial
data f0(R) must satisfy very stringent assumptions if the corresponding solution f (R, t)

behaves as one of the self-similar solutions (1.4) as t → ∞ (see also [4] for a related formal
study as well as [1] for an analogous study in a simplified model). Analogous results that
include also some necessary conditions on compactly supported initial data that yield the
asymptotics (1.6) can be found in [12, 13]. In an informal way the results in [9, 12, 13]
can be formulated saying that compactly supported initial data f0(R) for which the corre-
sponding solutions behave asymptotically as t → ∞ as (1.5), (1.6) must behave near the
maximum radius in the same way as these functions. Numerical studies of the asymptotics
of the solutions of (1.1–1.3) can be found in [2].

The results of the papers [9, 12, 13] are valid only for compactly supported initial data,
but no similar results have been derived in the noncompactly supported case. The goal of
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this paper is to develop a theory that describes self-similar asymptotics for (1.1–1.3) at the
level of formal asymptotics.

In [14] a formal asymptotic expansion for some particular noncompactly supported so-
lutions of the LSW model that decay exponentially as R → ∞ has been obtained. In a strict
sense the results in [14] were derived for the Becker-Döring system of equations. Neverthe-
less the only role played in that paper by the Becker-Döring part of the equation is to trans-
form compactly supported initial data in a noncompactly supported function that decreases
exponentially for large radii. Besides this difference, the rest of the analysis in [14] applies
without relevant changes to the LSW system. A relevant feature of the analysis in [14] was
a detailed analysis of some series that arise in the description of �(t) in (1.1) having the
form:

�(t) ∼ c0

t1/3

[
1 + c1

(
1

(log(t))2
+ 1

(log(t))2(log(log(t)))2
+ · · ·

)]
(1.7)

for suitable constants c0, c1.

Similar series had been originally obtained in the seminal paper [6]. The analysis of
this paper will provide an explanation for the onset of the series (1.7) for noncompactly
supported solutions of (1.1–1.3). The idea of using the Becker-Döring system in order to find
a selection mechanism for the “correct” self-similar behaviour of the LSW model has been
introduced also in [4]. We point out that the series (1.7) arise in the study of the “leaking”
of the characteristic curves near the critical radius. It was already noticed in [6] that such
“leaking” of characteristics plays a crucial role in the study of solutions behaving in a self-
similar manner for long times. The main goal of this paper is to understand such “leaking”
of characteristics in a detailed way.

A key point in the study made in the paper(s) [12, 13] was to approximate the dynamics
of the compactly supported solutions of the LSW system (1.1–1.3) that remain close to self-
similar solutions for long times by means of some integral equations. In this paper we will
derive also some integral equations that approximate the LSW dynamics near self-similar
solutions for noncompactly supported initial data. There are, however, several differences
between the integral equations in [12, 13] and the ones in this paper. Namely, the integral
equations that arise for compactly supported initial data are of convolution type and have
only one characteristic time scale. On the contrary, the equations derived in this paper for
noncompactly supported initial data have two characteristic time scales as t → ∞. Never-
theless, the solutions of these equations can be approximated for long times using multiple
scales techniques.

The plan of the paper is the following. In Sect. 2 we recall some basic facts about the
self-similar solutions of the LSW model. In Sect. 3 that contains the main results of this
paper we study in detail the asymptotic behaviour of the characteristic curves associated
to the LSW system yielding self-similar behaviour for the solutions of the problem. Some
technical results are collected in several Appendices at the end of the paper.

2 Preliminary Results. Self-Similar Solutions

Some computations will become simpler using as independent variable the volume of the
particles v instead of their radius, and replacing the particle density by the cumulative vol-
ume distribution. We define f̄ (v, t) by means of:

v = R3, t̄ = 3t,

f (R, t)dR = f̄ (v, t̄)dv
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whence f̄ (v, t̄) = 1
3v2/3 f (v1/3, t). We now introduce the cumulative volume distribution

F(v, t̄) :=
∫ ∞

v

f̄ (ξ, t̄)dξ. (2.1)

Using (1.1–1.3) it follows that F(v, t̄) satisfies:

∂F (v, t̄)

∂ t̄
+ (−1 + �(t̄)v1/3)

∂F (v, t̄)

∂v
= 0, t̄ > 0, v > 0, (2.2)

F(v,0) = F0(v) :=
∫ ∞

v

f̄0(ξ)dξ, v > 0, (2.3)

�(t̄) = 3F(0+, t̄)∫ ∞
0 v−2/3F(v, t̄)dv

. (2.4)

Due to the positivity of f, F (·, t̄) is a decreasing function. The conservation of the total
volume of the particles for the LSW model is:

d

dt̄

(∫ ∞

0
F(v, t̄)dv

)
= 0. (2.5)

We define a set of self-similar variables by means of:

F(v, t̄) = G(W,τ)

t̄ + 1
, W = 2v

t̄ + 1
, τ = log(t̄ + 1). (2.6)

In this new set of variables (2.2–2.4) becomes:

∂G

∂τ
+ (−2 + 3λ(τ)W 1/3 − W)

∂G

∂W
= G, (2.7)

λ(τ) = 2G(0+, τ )∫ ∞
0 W−2/3G(W,τ)dW

, (2.8)

G(W,0) = G0(W). (2.9)

The self-similar solutions of the LSW model are the steady states of the system of equa-
tions (2.7–2.9). They are given by the formulas:

Gs(W ;λ0) = K exp

(
−

∫ W

0

dξ

2 − 3λ0ξ 1/3 + ξ

)
, 0 ≤ W < W∗, Gs(W ;λ0) = 0

if W ≥ W∗, (2.10)

where λ0 ≥ 1, K > 0 and W∗ is the smallest positive root of the equation:

2 − 3λ0(W∗)1/3 + W∗ = 0. (2.11)

Since W∗ ≤ 1, for any λ0 ≥ 1 it follows that the solution of the family (2.10) having
maximal support is the one corresponding to λ0 = 1. Since that particular solution will be
used repeatedly in the following we write it separately by convenience. Moreover, we will
normalize the solution assuming that C = 1 for definiteness:

Gs(W) = exp

(
−

∫ W

0

dξ

2 − 3ξ 1/3 + ξ

)
, 0 ≤ W < 1, Gs(W) = 0 if W ≥ 1. (2.12)
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3 On the Conditions for Self-Similar Behaviour for Noncompactly Supported Data

Necessary and sufficient conditions for self-similar behaviour and compactly supported ini-
tial data have been studied in [9], as well as in [12, 13]. We will consider from now on the
asymptotic of the noncompactly supported solutions of the LSW model that remain close to
one of the self-similar solutions during their whole evolution.

3.1 The Only Possible Self-Similar Behaviour Is λ0 = 1

It is already implicit in the seminal paper [6] that noncompactly supported solutions of the
LSW model (1.1–1.3) that behave asymptotically as a self-similar solution must behave
necessarily like the self-similar solution (2.12). We recall here the basic argument that we
formulate in the form of a Theorem.

Theorem 1 Suppose that G(W,τ) is a solution of (1.1–1.3) with initial data G0(W) which
are nonincreasing, supported in [0,∞) and satisfying

∫ ∞
0 G0(W)dW < ∞. Let us suppose

also that limτ→∞ G(W,τ) = Gs(W ;λ0) uniformly in compact sets of W , where Gs(W ;λ0)

is one of the self-similar solutions in (2.10). Then λ0 = 1.

Proof We argue by contradiction. Let us assume that λ0 < 1. The volume conservation (2.5)
implies

d

dτ

(∫ ∞

0
G(W,τ)dW

)
= 0 (3.1)

whence: ∫ ∞

0
G(W,τ)dW =

∫ ∞

0
G0(W)dW < ∞. (3.2)

Let us denote as W(τ,W0) the solutions of the characteristic equations associated to (2.7)
satisfying W(0,W0) = W0. These functions solve:

dW(τ,W0)

dτ
= −2 + 3λ(τ)(W(τ,W0))

1/3 − W(τ,W0), (3.3)

W(0,W0) = W0. (3.4)

Suppose that G(W,τ) solution of (2.7) approaches to a self-similar solution with
λ0 > 1. Then λ(τ) → λ0 as τ → ∞, whence, for τ large enough, the right-hand side of (3.3)
vanishes at two values W1(τ ), W2(τ ), 0 < W1(τ ) < W2(τ ) < ∞ that approach as τ → ∞
to the two positive roots of the equation

−2 + 3λ0W̄
1/3
i − W̄i = 0, i = 1,2,

where 0 < W̄1 < W̄2 < ∞.

Using the continuous dependence of the solutions of ordinary differential equations with
respect to their initial data, it follows that limW0→∞ W(τ,W0)

W0
= e−τ uniformly in compact

sets τ ∈ [0,L], L > 0. Choosing L large enough to ensure that W1(τ ), W2(τ ) are well
defined, it then follows that W(L,W0) > W2(L) for W0 sufficiently large. Since the tra-
jectories associated to the solutions of (3.3) do not intersect in the space (τ,W) it follows
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that W(τ,W0) > W2(τ ) for τ ≥ L. Moreover, the right hand side of (3.3) is negative for
W(τ,W0) > W2(τ ). Therefore W(·,W0) is a decreasing function and

lim
τ→∞W(τ,W0) = W̄2 (3.5)

for W0 sufficiently large.
Notice that, since G0(·) is not compactly supported and nonincreasing, we have

G0(W0) > 0 for any W0 ≥ 0. Integrating by characteristics (2.7), (2.9) it follows that
G(W(τ,W0), τ ) = G0(W0)e

τ . Using again the monotonicity properties of G(·) as well as
(3.5), it follows that:

lim
τ→∞ inf

(
infW∈[0,W̄2−ε0] G(W,τ)

eτ

)
≥ lim

τ→∞
G(W(τ,W0), τ )

eτ
> 0 (3.6)

for any ε0 > 0 small, and W0 sufficiently large. However, (3.6) contradicts (3.2) and the
Theorem follows. �

It then follows that the only admissible self-similar behaviour for (2.7) is (2.12). More-
over, the argument above shows that, since G increases exponentially along characteristics,
these ones should “leak” across the critical line W = 1 at a very precise rate in order to
obtain the conservation of volume property (3.1). The rest of the paper is basically a de-
scription of the precise way in which this “leaking” of the characteristic curves across the
critical line takes place.

3.2 Necessary Conditions for Self-Similar Behaviour

Let us define

β(τ) := λ(τ) − 1. (3.7)

Since
∫ ∞

0 W−2/3 Gs(W)

Gs(0)
dW = 2, it follows from (2.8) that:

β(τ) = −
∫ ∞

0 W−2/3(G(W,τ) − G(0+, τ )Gs(W))dW∫ ∞
0 W−2/3G(W,τ)dW

(3.8)

and (2.7), (2.9) might be written as:

∂G

∂τ
+ (−2 + 3W 1/3 − W + 3β(τ)W 1/3)

∂G

∂W
= G, (3.9)

G(W,0) = G0(W). (3.10)

We now derive assumptions that must be posed on G0(W) in order to have the self-
similar behaviour (2.12) for the solutions of (3.8–3.10). Using the function β(τ) we can
rewrite the characteristic equations for W(τ ;W0), (3.3), (3.4) as:

dW

dτ
= −h(W) + 3β(τ)W 1/3, (3.11)

W(0,W0) = W0, (3.12)

where:

h(W) = 2 − 3W 1/3 + W.
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Notice that the function h(W) is a convex function with a minimum at W = 1 where the
following approximation holds:

h(W) = (W − 1)2

3
+ O

(
(W − 1)3

)
as W → 1. (3.13)

For any function β(τ) satisfying limτ→∞ β(τ) = 0, we will denote as trajectories the
curves contained in the quadrant of the plane {(τ,W) : τ ≥ 0, W ≥ 0} and given by
{(τ,W(τ ;W0)) : τ ≥ 0} for each W0 > 0.

Integrating (3.9) along characteristics we obtain the following identity along the trajec-
tories

G(W(τ ;W0), τ ) = G0(W0)e
τ . (3.14)

Since G(W,τ) behaves in a self-similar manner as τ → ∞ it follows from (3.8) that

β(τ) → 0 as τ → ∞. (3.15)

The basic idea of the analysis in this Subsection is the following. If W(τ ;W0) is separated
from the critical line W = 1 the function h(W) is of order one, and due to (3.15) we can
approximate (3.11) as:

Wτ = −h(W). (3.16)

On the other hand, if W(τ ;W0) is close to W = 1 the term β(τ) cannot be ignored
in (3.11), but using (3.13) we can approximate (3.11) to the leading order as:

Wτ = − (W − 1)2

3
+ 3β(τ). (3.17)

Since for long times the only trajectories left are those starting at W0 → ∞, it is con-
venient to show that it is possible to use (3.16) to approximate the trajectories having large
values of W as well. Notice that for large values of W0, during the first part of the evolution,
for bounded values of τ, W(τ ;W0) is large and the contribution of the term 3β(τ)W 1/3

in (3.11) is negligible due to the presence of the term −W there. Moreover, if τ → ∞,

W(τ ;W0) becomes of order one, and due to (3.15) the term 3β(τ)W 1/3 would be negligible
too as long as (−2+3W 1/3 −W) is of order one. Since this function is quadratic in (W −1)

as W → 1, it follows that the term 3β(τ)W 1/3 can be neglected also in (3.11) as long as
|W − 1| remains of order one. Therefore, the combination of these approximations implies
that the characteristic trajectories starting at W = W0 with W0 
 1, might be approximated
as τ → ∞ by means of the solutions of (3.16) as long as |W − 1| remains of order one or
larger.

The key idea of this paper is to approximate to the leading order the evolution of the char-
acteristics using the explicitly solvable (3.16) for |W − 1| � 1, and (3.17) if |W − 1| small.
This last equation is not explicitly solvable for an arbitrary function β(τ) that approaches
zero as τ → ∞. Notice that a basic feature of (3.17), that will play a crucial role during the
analysis made in this paper, is that the time that the trajectories associated to their solutions
spend near the critical line W = 1 depends on a very sensitive manner in the choice of the
function β(τ). Figure 1 shows the typical aspect in the plane {(W, τ)} of the characteristic
curves vanishing in a finite time if (3.15) holds.

Let us proceed to analyze the solutions of (3.16). There exists a conserved quantity along
the trajectories associated to (3.16) for W < 1, namely

Fint
(
W(τ,W0)

) + τ, (3.18)
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Fig. 1 A typical characteristic
curve

where

Fint(W) =
∫ W

0

dη

2 − 3η1/3 + η
. (3.19)

Let us denote as W0(τ ;W) the inverse function of W(τ ;W0) for each given τ, or more
precisely:

W
(
τ ;W0(τ ;W)

) = W. (3.20)

Taking into account (3.11), (3.18) as well as the fact that limτ→∞ β(τ) = 0, it follows
that for any α ∈ [0,1)

W0(τ ;W) = W0(τ + Fint(W) − Fint(α) + ε(τ,W,α);α), (3.21)

where

lim
τ→∞ ε(τ,W,α) = 0 (3.22)

uniformly on compact sets of W ∈ [0,1). Indeed, let us denote as τ̄ (α;W,τ) the time in
which the characteristic curve that reaches the value W at the time τ reaches α. Since the
evolution of the characteristics might be approximated by means of (3.16) for large τ, it fol-
lows that τ̄ (α;W,τ) is well defined. Notice that, since we are just considering the evolution
of a unique characteristic, we have by definition:

W0(τ ;W) = W0(τ̄ (α;W,τ);α).

Let us suppose now that the characteristic curves under consideration were given by
means of the solutions of the approximate equation (3.16). The conservation of the quan-
tity (3.18) along the trajectories associated to this then implies:

τ + Fint(W) = τ̄ (α;W,τ) + Fint(α). (3.23)

It turns out, however, that the evolution of the characteristic curves is not given by (3.16)
but by (3.11). Since |τ − τ̄ (α;W,τ)| is bounded for α,W ∈ [0,1) and limτ→∞ β(τ) = 0
we can apply classical continuous dependence results for ordinary differential equations to
obtain:

τ + Fint(W) + ε(τ,W,α) = τ̄ (α;W,τ) + Fint(α),

where ε(τ,W,α) is small if τ is sufficiently large, whence (3.22) follows.
Using (3.14), (3.21) as well as the fact that G(W,τ) approaches a self-similar solution

as τ → ∞ we obtain
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G0(W0(τ + Fint(W) − Fint(α) + ε(τ,W,α);α))

= G0(W0(τ ;W)) = G(W,τ)e−τ

= Ce−τ e−Fint(W)[1 + o(1)] (3.24)

as τ → ∞, for some suitable constant C that must be obtained using the volume conserva-
tion (3.1).

In particular for each given α ∈ [0,1), there exists a continuous, strictly increasing func-
tion ω(τ) such that

G0(ω(τ)) = Ce−Fint(α)[1 + o(1)]e−τ (3.25)

as τ → ∞, where

ω(τ) = W0(τ ;α). (3.26)

Condition (3.25) provides a necessary condition that must be satisfied by the initial data
G0 in order to have self-similar behaviour for the solution of (3.8–3.10). However, this
condition is less stringent than the ones arising in the compactly supported case (cf. [9, 12]).
Indeed, given an arbitrary continuous function G0(W), which is strictly decreasing, we can
find a continuous, strictly decreasing ω(τ) such that (3.25) holds by means of:

ω(τ) = G−1
0

(
Ce−Fint(α)e−τ [1 + o(1)]). (3.27)

At a first glance, this suggests that any continuous, noncompactly supported, strictly de-
creasing initial data G0(W) yields self-similar behaviour as τ → ∞. Nevertheless, it turns
out that this is not the case because, as it is shown in the next Subsection, there exist non-
compactly supported initial data G0(W) for which the long time asymptotics of the solutions
of the LSW model is not self-similar. The reason for this is that an initial data, besides sat-
isfying (3.25) for some function ω(τ) must also verify that the corresponding function β(τ)

that is uniquely defined by means of (3.26) (see Appendix 1), must satisfy

lim
τ→∞β(τ) = 0, (3.28)

since otherwise self-similar behaviour would not be possible.
Moreover, we remark for further reference that the existence of a function β(τ) satisfying

(3.28) as well as (3.26) with ω(τ) as in (3.27) implies (3.24).

Remark 2 It could seem natural to choose α = 0 in the previous arguments in order to
simplify the computations, but this would introduce some technical complications in the
proof of the results in Appendix 1 due to the singular behaviours of the characteristics,
solution of (3.11), (3.12) as W → 0. For simplicity, it will be assumed in the rest of the
paper that α = 1

2 .

3.3 Nonselfsimilar Behaviour for the LSW Model

If G0 is allowed to have discontinuities, or equivalently f0(R) in (1.2) is allowed to contain
Dirac masses, it is not hard to find examples of solutions of (3.8–3.10) that do not behave in
a self-similar manner as τ → ∞. Indeed, let us define G0(W) as follows:

G0(W) = 2−n, W ∈ (n,n + 1], n = 0,1,2, . . . . (3.29)

We begin with the following auxiliary result:
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Theorem 3 The solution of (3.8–3.10) with initial data as in (3.29) is globally defined for
any τ ≥ 0.

Proof Local existence might be obtained adapting the arguments in [10]. In order to prove
global existence it is then enough to show that the characteristic trajectories associated to
the solutions of (3.11), (3.12) are globally defined. To this end, it is enough to show that
|β(τ)| is bounded in any interval 0 ≤ τ ≤ T , for any T > 0. In order to show this we notice
that, since λ(τ) = 1 + β(τ) ≥ 0, (3.11), (3.12) yield:

W(τ ;W0) ≥ W0e
−τ . (3.30)

Due to the positivity of G0(W) for any W ≥ 0, it follows from (3.30) that
∫ ∞

0 W−2/3 ×
G(W,τ)dW ≥ δT > 0 for 0 ≤ τ ≤ T . Using (3.8) it then follows that:

|β(τ)| ≤ CT

(
G(0+, τ ) +

∫ ∞

0
G(W,τ)dW

)

and due to the volume conservation property (3.1) as well as (3.14) it then follows that |β(τ)|
is bounded in any finite interval 0 ≤ τ ≤ T , whence the result follows. �

Theorem 4 Suppose that G(W,τ) is the solution of (3.8–3.10) with initial data (3.29).
Then G(W,τ) does not behave in a self-similar manner as τ → ∞, or more precisely, the
following formula cannot be satisfied:

lim
τ→∞G(W,τ) = Gs(W ;λ0), W ≥ 0 (3.31)

with Gs(W ;λ0) as in (2.10) for any K > 0 and λ0 ≥ 1.

Proof Let us suppose that (3.31) is satisfied for some K > 0. Then, due to Theorem 1,
λ0 = 1. Moreover, Lebesgue’s dominated convergence Theorem combined with (3.31) as
well as the volume conservation (3.1) implies the following formula for the function β(τ)

in (3.8) for any L > 0:

lim
τ→∞ sup |β(τ)|

≤ limτ→∞
∫ L

0 W−2/3|G(W,τ) − G(0+, τ )Gs(W)|dW

limτ→∞
∫ L

0 W−2/3G(W,τ)dW

+
1

L2/3 supτ

∫ ∞
L

[G(W,τ) + G(0+, τ )Gs(W)]dW

limτ→∞
∫ L

0 W−2/3G(W,τ)dW

≤ C

L2/3
,

where C is independent on L. Choosing L large it then follows that:

lim
τ→∞β(τ) = 0.

Therefore, the absolute value of the speed of the characteristic curves associated to (3.11)
is bounded below for W ≤ 1

2 . We can then define a sequence of times τn such that:

lim
n→∞ τn = ∞ and W(τn;n) = 0.
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On the other hand, (3.14) and (3.29) imply that G(W,τ) is discontinuous at the points
W = W(τ ;n) where it satisfies the jump condition:

G(W−, τ ) − G(W+, τ ) = 1

2
G(W−, τ ). (3.32)

Using (3.32) we then have:

G(0, τ−
n ) − G(0, τ+

n ) = 1

2
G(0, τ−

n )

but this identity is incompatible with the existence of the limit limτ→∞ G(0, τ ) unless C = 0,

whence the Theorem follows. �

Remark 5 Notice that for the function G0 in (3.29) the condition (3.25) fails. Indeed, we
have

G0(n
−) − G0(n

+) = G0(n
−)

2
. (3.33)

Condition (3.25) implies

lim
τ→∞

G0(ω(τ + a))

G0(ω(τ))
= e−a (3.34)

uniformly on compact sets a ∈ [0,∞). However, (3.33), (3.34) are incompatible. Indeed, let
us define τn = ω−1(n − 1

2 ). It follows from (3.33) that the function G0(ω(τn+a))

G0(ω(τn))
has a jump

discontinuity of at least high 1
2 at the value a = 1

2 , and this contradicts (3.34).

In the following result we show that in the previous Theorem we do not need to assume
that the initial distribution function f0(R) is a singular measure. On the contrary, it is possi-
ble to assume that f0 ∈ C∞(R+).

Theorem 6 There exist functions G0,ε ∈ C∞(R+) which are strictly decreasing and non-
compactly supported such that the corresponding solution of the problem (3.8–3.10) does
not behave in a self-similar manner as τ → ∞. More precisely (3.31) is not satisfied for any
K > 0 and λ0 ≥ 1.

Proof The basic idea is to construct G0,ε(W) as a perturbation of the initial data G0(W)

in (3.29). Let us consider a sequence of positive numbers {ε} := {εn > 0 : n = 1,2, . . .}
satisfying

· · · < εn+1 < εn < · · · < ε1 <
1

4
, n = 1,2, . . .

and whose values will be precised later. We then define a function G0,ε ∈ C∞(R+) with the
following properties:

G0,ε(W) = 1, W ∈ (0,1 − ε1],
G0,ε(W) = 2−n, W ∈ [n + εn, n + 1 − εn+1], n = 1,2, . . . ,

G0,ε(W) strictly decreasing in
∞⋃

n=1

(n − εn, n + εn).
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Let us denote as βε(τ ) the corresponding function given by (3.8) for the solutions
Gε(W,τ) having initial data G0,ε(W). As a first step we show that the solutions Gε(W,τ)

are globally defined in time if the sequence {ε} is small enough in some suitable sense. To
this end we derive an estimate on the functions βε(τ ) independent on {ε}. Let us denote
as Wε(τ ;W0) the solution of the characteristic equations (3.11), (3.12) with β(τ) = βε(τ ).

Differentiating these equations with respect to W0 we obtain:

d

dτ

(
∂Wε

∂W0

)
= −∂Wε

∂W0
+ λε(τ )W−2/3

ε

∂Wε

∂W0
, (3.35)

∂Wε

∂W0
(0,W0) = 1, (3.36)

where λε(τ ) = 1 + βε(τ ). Using the positivity of λε(τ ) we obtain:

∂Wε

∂W0
≥ e−τ . (3.37)

We can now derive an upper estimate of λε(τ ) using (2.8). Let us denote as W0,ε(τ ;W)

the inverse of Wε(τ ;W0) for each given value of τ :

Wε(τ ;W0,ε(τ ;W)) = W, W ≥ 0. (3.38)

The starting value of W of the characteristic that vanishes at time τ is then given by
W0,ε(τ ;0). Our definition of G0,ε(W0) implies:

G0,ε(W0 + 1) ≥ 1

2
G0,ε(W0). (3.39)

Using (3.37) we can estimate the value of W at time τ for the trajectory starting at the point
W0,ε(τ ;0) + 1 at time τ = 0. We have:

Wε(τ ;W0,ε(τ ;0) + 1) ≥ e−τ .

Then, using also (3.39):

∫ ∞

0
W−2/3G(W,τ)dW ≥

∫ Wε(τ ;W0,ε(τ ;0)+1)

0
W−2/3G(W,τ)dW

≥
∫ Wε(τ ;W0,ε(τ ;0)+1)

0
W−2/3G(Wε(τ ;W0,ε(τ ;0) + 1), τ )dW

= eτG0,ε(W0,ε(τ ;0) + 1)

∫ Wε(τ ;W0,ε(τ ;0)+1)

0
W−2/3dW

≥ 3eτG0,ε(W0,ε(τ ;0))

2
(Wε(τ ;W0,ε(τ ;0) + 1))1/3

≥ 3

2
G(0+, τ )e− τ

3 .

Therefore (2.8) implies the following estimate:

0 ≤ λε(τ ) ≤ 4

3
e

τ
3 . (3.40)
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Estimate (3.40) yields global existence of the solutions Gε(W,τ) having as initial
data G0,ε.

As a next step we need to derive an upper estimate which is uniform in ε, for the time
that a characteristic starting at W0 remains in the region W > 0. For each W0 > 0, let us
define:

T ∗
ε (W0) := inf{τ > 0 : Wε(τ ;W0) = 0}. (3.41)

Using the volume conservation (3.1) we can derive some auxiliary estimates for
Wε(τ ;W0). Indeed, notice that for any τ < T ∗

ε (W0) we have:

Cε :=
∫ ∞

0
Gε(W,τ)dW ≥

∫ Wε(τ ;W0)

0
Gε(W,τ)dW ≥ Gε(Wε(τ ;W0), τ )Wε(τ ;W0),

where Cε = ∫ ∞
0 G0,ε(W)dW is uniformly bounded above and below for the class of values

{ε} under consideration. Using then (3.14) we obtain:

C ≥ G0,ε(W0)e
τWε(τ ;W0),

where C is independent on {ε}. Then, since G0,ε(W0) ≥ e−bW0 for some b > 0 independent
on {ε} we obtain:

Wε(τ ;W0) ≤ CebW0e−τ . (3.42)

Notice that (3.42) implies that for τ ≥ τ0(W0) := bW0 + log(C) we have:

Wε(τ ;W0) ≤ 1. (3.43)

We can now derive the desired upper estimate for T ∗
ε (W0). Using again (3.1) and (3.14)

we obtain:

Cε :=
∫ ∞

0
Gε(W,τ)dW = eτ

∫ ∞

W0,ε(τ ;0)

G0,ε(W0)
∂Wε

∂W0
(τ ;W0)dW0. (3.44)

Suppose that T ∗
ε (W0) > τ0(W0), since otherwise the desired uniform upper estimate

would be already derived. Integrating (3.35), (3.36) we derive the following inequality for
τ0(W0) ≤ τ ≤ T ∗

ε (W0):

∂Wε

∂W0
(τ ;W0) = e−τ e

∫ τ
0 λε(s)W

−2/3
ε (s;W0)ds ≥ e−τ e

∫ τ
τ0(W0) λε(s)W

−2/3
ε (s;W0)ds

.

Using (3.43) it follows that:

∂Wε

∂W0
(τ ;W0) ≥ e−τ e

∫ τ
τ0(W0) λε(s)ds

and plugging this inequality into (3.44), combined with G0,ε(W0) ≥ e−bW0 we obtain:

e
∫ τ
τ0(W0) λε(s)ds ≤ CebW0

whence: ∫ τ

τ0(W0)

λε(s)ds ≤ τ0(W0) = bW0 + C. (3.45)
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Due to (3.43), the equation that defines the characteristic curves (3.11) can then estimated
for τ ≥ τ0(W0) as:

Wε,τ ≤ −2 − W + 3λε(τ ) ≤ −2 + 3λε(τ ).

Then, using again (3.43) as well as (3.45):

Wε(τ ;W0) ≤ 1 − 2(τ − τ0(W0)) + 3τ0(W0)

and this inequality finally yields:

T ∗
ε (W0) ≤ τ0(W0) + 1 + 3τ0(W0)

2
≤ C(1 + W0) (3.46)

for some C > 0. This is the sought-for uniform estimate for the lifetime of each characteris-
tic curve.

In order to conclude the proof of the Theorem we just need to show that choosing {ε}
small in some suitable sense, the corresponding solution of (3.8–3.10) Gε(W,τ) cannot
approach to a self-similar solution.

Notice that using a Gronwall estimate in (3.11), (3.12) combined with the uniform esti-
mate (3.40) we obtain, for 0 ≤ τ ≤ τ ∗:

|Wε(τ ;W0,1) − Wε(τ ;W0,2)| ≤ h(τ ∗)|W0,1 − W0,2| (3.47)

for any W0,1, W0,2 ∈ (0,∞) as long as both trajectories are defined. From now on we denote
as h(·) a generic increasing function, bounded in any compact set of [0,∞).

Let us assume that W0,1 = n − εn, W0,2 = n + εn. Then (3.47) becomes:

|Wε(τ ;n − εn) − Wε(τ ;n + εn)| ≤ 2h(τ ∗)εn. (3.48)

Notice that due to (3.46) the trajectories Wε(τ ;n − εn), Wε(τ ;n + εn) vanish at some
times T ∗

ε (n − εn) ≤ Cn, T ∗
ε (n − εn) ≤ Cn.

Using (3.11), (3.12) and (3.40) it follows that there exists δn > 0 such that, for any
0 ≤ τ0 ≤ Cn, two trajectories that at time τ = τ0 are contained in the interval W ∈ (0, δn)

disappear in a time smaller than δn and the vanishing times are separated less than an
amount Cδn. Indeed, notice that to show this result it is enough to choose δn satisfying
λ(τ)(δn)

1/3 ≤ eCn(δn)
1/3 sufficiently small.

Suppose that we then select εn such that 2h(Cn)εn ≤ min( δn
2 , 1

n
). Then, due to (3.48) we

obtain that the trajectories starting at the points W0 = n − εn and W0 = n + εn disappear
respectively at two times T ∗

ε (n − εn) and T ∗
ε (n + εn) satisfying:

0 ≤ T ∗
ε (n + εn) − T ∗

ε (n − εn) ≤ C

n
. (3.49)

Since

G(0+, T ∗
ε (n + εn)) = eT ∗

ε (n+εn)G0(n + εn),

G(0+, T ∗
ε (n − εn)) = eT ∗

ε (n−εn)G0(n − εn)

it then follows from the fact that G0(n − εn) − G0(n + εn) ≥ G0(n−εn)

2 and from (3.49) that
G(0+τ) cannot converge to a limit as τ → ∞ whence the Theorem follows. �
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3.4 Approximating the Solutions of the LSW Model that Are Close to Self-Similar
Solutions for Long Times

3.4.1 Sketch of the Main Ideas

Our goal is to approximate the dynamics of the LSW model for noncompactly supported
solutions that remain close to self-similar solutions in some suitable sense. The most natural
idea would be try to linearize the LSW model near the self-similar solution given in (2.12).
Unfortunately such type of linearizations are not so simple in the LSW system, even for
compactly supported solutions. In the case of noncompactly supported solutions the struc-
ture of the characteristic curves given by (3.11) in the plane {(τ,W)} is very different for the
explicit self-similar solution (2.12) and for a noncompactly solution approaching to (2.12)
as τ → ∞. Indeed, in the first case all the characteristic curves where G > 0 are contained
in the half-strip {(τ,W) : τ ≥ 0, 0 ≤ W ≤ 1}. On the contrary, in the case of noncompactly
supported solutions the only characteristic curves that are needed to describe the long time
asymptotics of the solutions as τ → ∞ are those beginning at W = W0 for τ = 0, with
W0 → ∞. The dynamics of these characteristic curves that have been described in Sect. 3.2
can be separated into three different stages. In the first stage the characteristic curves might
be approximated using (3.16) and W decreases from W0 to some value close to one but
larger. During the second stage, the characteristics can be approximated using (3.17) and W

remains close to one. Finally in the last stage W is smaller than one and |W − 1| becomes of
order one. During this third stage the dynamics of the characteristics can be approximated
again using (3.16).

The basic idea of this paper consists in using the description of the characteristics
sketched above in order to derive some problems, simpler than the whole LSW system,
but easier to analyze. In the rest of this paper we will be concerned with the study of three
problems that we state by decreasing order of difficulty:

(i) The whole LSW model near the selfsimilar solution (2.12) (cf. (3.8), (3.9), (3.10)).
(ii) The transition problem (cf. (3.53), (3.54) below).

(iii) The approximate transition problem (cf. (3.75), (3.76) below).

A rather peculiar feature of the LSW model is the fact that the function β(τ) that has
a crucial effect in the evolution of the characteristic curves depends on the solution of the
problem itself by means of the nonlocal condition (3.8). On the contrary in the transition
problem mentioned above, β(τ) will not be chosen by means of the nonlocal condition,
but instead it will be chosen as the function that produces such a transformation in the
characteristic curves given by (3.11), (3.12) that the function G obtained by means of (3.14)
and that it will be denoted as Gtrans(W, τ) from now on, satisfies:

Gtrans

(
1

2
, τ

)
= Gs

(
1

2

)
(1 + o(1)), as τ → ∞, (3.50)

where Gs(W) is as in (2.12).
The transition problem described above is not a standard initial value problem for ordi-

nary differential equations. Actually, this problem has more analogies, from the mathemat-
ical point of view, with an inverse scattering problem. In this case the data is G0(W) (or
equivalently, due to (3.27) ω(τ)), and the function to be obtained is β(τ).

At a first glance the original LSW model (i) and the transition problem (ii) look very
unrelated, but it turns out that this is not the case. It is not hard to see, from the dynamics of
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the characteristic curves and using (3.27) that, if

lim
τ→∞β(τ) = 0 (3.51)

the function Gtrans(W, τ) satisfies:

Gtrans(W, τ) ∼ Gs(W) as τ → ∞ (3.52)

uniformly on compact sets of W if (3.27). Since the right hand side of (3.52) is a solution
of the whole LSW model it follows that Gtrans(W, τ) provides an approximate solution of
the LSW model as τ → ∞. Therefore, if (3.51) is satisfied the solution of the transition
problem (ii) provides an approximation of the whole LSW dynamics.

Let us explain now the role played by the approximate transition problem (iii) in this
paper. It turns out that it is easy to prove local solvability of the transition problem (i) (cf.
Appendix 1), but it is not so simple to obtain information about the long time asymptot-
ics of its solutions. However, it turns out that, under the assumption (3.51), it is possible
to approximate for long times the transition problem (ii) using the approximate transition
problem (iii) that is explicitly solvable. The key idea in the derivation of the approximate
transition problem is to replace the evolution of the characteristic curves (3.11) by the sim-
pler equation (3.17). On the other hand, the characteristic curves are approximated for the
values of τ where |W − 1| � 1 using the approximate equation (3.16) that can be solved
explicitly. Using these approximations the condition (3.50) becomes a condition in the time
that a characteristic curve, that “arrives” at a time τ1 to the critical line, remains “trapped”
near such a critical line (cf. (3.71), (3.74)). Precise definitions of the “arrival time” and
“trapping time” are given later.

As it was mentioned above, it turns out that the approximate transition problem (iii) can
be explicitly solved (cf. Sect. 3.4.3). The reason that underlies the solvability of the approx-
imate transition problem is the fact that the Riccati equation (3.17) can be transformed into
a second order linear equation. The condition that prescribes the trapping time of the tra-
jectories can be reformulated as a condition on the distance between consecutive zeroes of
the solutions of the second order linear equation. The problem then becomes the one of re-
constructing the “potential” β(τ) given the distance between zeros of the solutions, and this
can be made using general properties of second order linear equations. In this paper we have
not followed such approach, but the solution given in this paper of the approximate transi-
tion problem (iii) is convenient in order to study the long time asymptotics of the transition
problem (ii) in a perturbative manner.

We can now describe the general strategy that will be followed in this paper to study
self-similar asymptotics of the solutions of the LSW model (i). We will first formulate in a
precise manner the transition problem (ii) and the approximate transition problem (iii) (cf.
Sect. 3.4.2). The explicit solution of the approximate transition problem (iii) will be then
given in Sect. 3.4.3. Using this explicit solution we will be able to develop a formalism
that describes the long time asymptotics of the solutions of the transition problem (ii) in
Sect. 3.4.4 if (3.51) holds. Finally, since the transition problem (ii) approximates the whole
LSW model (i) if (3.51) is satisfied, as it was explained above, it is reasonable to “linearize”
the LSW model near the transition problem (ii). This is made in Sect. 3.5.

It is natural to ask if it would not be simpler to approximate directly the LSW model (i)
using the approximate transition problem (iii). The main difficulty that we have found with
that approach is that the “trapping time” near the critical line is rather sensitive to the non-
linear terms O((W − 1)3) that have been ignored in the approximation (3.17). As a conse-
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quence the solutions of the approximate transition problem (iii) do not satisfy in an approx-
imate manner the volume conservation property (3.1). In particular this makes the approxi-
mate transition problem (iii) less convenient in order to linearize the whole LSW model (i).
For this reason, we have found more it convenient to approximate the LSW dynamics us-
ing the transition problem (ii) as an intermediate step that allows to control more easily the
effect of the above mentioned terms of order O((W − 1)3).

3.4.2 The Transition Problem and the Approximate Transition Problem

3.4.2.1 The Transition Problem As indicated above, we first define a problem that ap-
proximates asymptotically the LSW dynamics near self-similar solutions. In a more precise
manner, notice that the evolution of each characteristic curve depends, by means of the func-
tion β(τ) in (3.8) on the values of G in all the characteristic curves at a given time τ. We
have seen in the previous Subsection that for solutions behaving in a self-similar manner, if
ω(τ) is given by (3.26), (3.25) is satisfied. In Appendix 1 it is shown that the function β(τ)

is uniquely prescribed by means of the function W0(τ ;α) for any fixed value of α ∈ (0,1).

The term o(1) in (3.25) does not modify the self-similar behaviour of G(W,τ). Therefore,
the LSW model might be approximated by the following auxiliary problem:

To find β(τ) such that the function W(τ ;W0) solution of:

Wτ = −2 + 3W 1/3 − W + 3β(τ)W 1/3, (3.53)

W(0;W0) = W0 (3.54)

satisfies:

W(τ ;ω(τ)) = α = 1

2
, (3.55)

where:

ω(τ) = G−1
0 (Ce−Fint(

1
2 )e−τ ) (3.56)

with:

C =
∫ ∞

0 G0(W)dW∫ ∞
0 e−Fint(W)dW

. (3.57)

The main advantage of the problem (3.53–3.57), that will be denoted from now on as
“transition problem”, is that the integral term (3.8) disappears. Moreover, problem (3.53–
3.57) can be approximated, as it will be seen below, by an explicitly solvable problem as
τ → ∞. Of course, it is not possible to ensure that for functions Gtrans(W, τ) obtained by
means of the evolution by characteristics (3.11), (3.12) and (3.14), and β(τ) chosen solving
the transition problem, the resulting function β(τ) will be given by the integral formula (3.8)
and in general this will not happen. On the other hand, since, as we will see, β(τ) → 0 as
τ → ∞, it turns out that the function Gtrans(W, τ) so obtained will behave like the self-
similar solution Gs(W) given in (2.12) (up to a multiplicative constant). Since the formula
for β(τ) in (3.8) is just a reformulation of the volume conservation property (3.1) and the
volume conservation property is satisfied for the self-similar solutions (2.12) we can expect
Gtrans(W, τ) to be an approximation of the solution of the LSW problem, and in particular
to satisfy (3.8) up to some approximation.
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3.4.2.2 The Approximate Transition Problem We now proceed to derive an “approximate
transition problem”, that in some sense is close to the transition problem (3.53–3.57) as
τ → ∞, and it has the advantage of being explicitly solvable. To this end we need to de-
scribe the behaviour of the characteristic curves associated to (3.53–3.57) for long times.
The characteristics arriving at W ≈ 1 at a time τ 
 1 start their motion at some W0 
 1. As
long as W − 1 is of order one the solutions of (3.53) can be approximated by means of the
solutions of (3.16) that are given by

W(τ ;W0) = wext(τ − log(W0) + Fext(W0)), (3.58)

where:

− log(wext(s)) + Fext(wext(s)) = s, (3.59)

Fext(W) :=
∫ ∞

W

[
1

2 − 3η1/3 + η
− 1

η

]
dη =

∫ ∞

W

(3η1/3 − 2)

(2 − 3η1/3 + η)η
dη. (3.60)

Notice that:

Fext(W) = 3

(W − 1)
− 5

3
log(W − 1) + O(1) as W → 1+. (3.61)

After reaching the region where W becomes of order one the characteristics remain
trapped in the region W ≈ 1 during a very long time, due to the smallness of β(τ), before
crossing to the region W < 1. This stage is the crucial part of the evolution of the character-
istics. In this part of the dynamics the equation for the characteristics can be approximated
by means of (3.17). Using (3.59–3.61) we obtain the following asymptotics:

wext(s) ∼ 1 + 3

s
− 5 log( 3

s
)

s2
+ O

(
1

s2

)
as s → ∞. (3.62)

It then follows from (3.58) that in the “transition region” where W ≈ 1, the characteristic
W(τ ;W0) matches in the region where (τ − log(W0) + Fext(W0)) 
 1, (W − 1)2 
 |β(τ)|
with the unique solution of (3.17) that satisfies

W = +∞ at τ = log(W0) − Fext(W0). (3.63)

On the other hand, let us suppose that the characteristic curve W(τ ;W0) satisfies
W(τ̄ ;W0) = α, where α = 1

2 and τ̄ is a large number. Using the approximation (3.16) in
the region where (1 − W) is of order one it would follow that

W(τ ;W0) = wint(τ − τ̄ − Fint(α)), (3.64)

where Fint is as in (3.19) and wint is defined by means of:

Fint(wint(s)) = −s. (3.65)

Notice that

Fint(W) ∼ 3

(1 − W)
+ 5

3
log(1 − W) + O(1) as W → 1−. (3.66)



Self-Similar Behaviour for Noncompactly Supported Solutions 775

Combining (3.65) and (3.67) we obtain

wint(s) ∼ 1 + 3

s
− 5 log(− 3

s
)

s2
+ O

(
1

s2

)
as s → −∞. (3.67)

Let us denote as Ŵ the unique solution of (3.17) satisfying:

Ŵ = −∞ at τ = τ̄ + Fint(W̄ ). (3.68)

The formulas (3.64) and (3.67) imply that W(τ ;W0) matches with Ŵ for the values of τ

satisfying:

(τ − τ̄ − Fint(α)) 
 1, (Ŵ − 1)2 
 |β(τ)|. (3.69)

Indeed, we are interested in the study of (3.17) with |β(τ)| → 0 as τ → ∞. For such a
solutions and, as long as (W − 1)2 
 |β(τ)| we can approximate the solutions of (3.17) by

means of the solutions of Ŵτ = − (Ŵ−1)2

3 . The solutions of this equation satisfying (3.68)
have the form:

Ŵ = 1 + 3

(τ − τ̄ − Fint(α))

and due to (3.64) as well as the asymptotics (3.67), Ŵ matches with W(τ ;W0) if (3.69)
is satisfied. Notice that, at a first glance there seems to be something paradoxical in the
fact that |Ŵ | could become unbounded near the points τ = log(W0) − Fext(W0) and τ =
τ̄ + Fint(α), since the functions W(τ ;W0) remains always bounded. However, there is not
such a paradox, because the function W is approximated by means of the solution of (3.17)
satisfying (3.63) only in those regions where |Ŵ − 1| � 1. The use of a boundary condition
like (3.68) where Ŵ takes unbounded values is just a convenient normalization condition
that will simplify the analysis of the dynamics of the characteristics (3.11), (3.12) near the
critical line W = 1.

In order to simplify the notation we define X := Ŵ − 1. Combining (3.17), (3.63), it
follows that X satisfies for each τ̄

Xτ = −X2

3
+ 3β(τ), S(τ̄ ) < τ < τ̄ , (3.70)

X(S(τ̄ )) = +∞, X(τ̄ ) = −∞, (3.71)

where the function S(τ̄ ) has been defined by means of the equation

S(τ̄ + Fint(α)) = log(W0) − Fext(W0). (3.72)

In particular, choosing α = 1
2 , and using (3.55) we obtain that

S

(
τ̄ + Fint

(
1

2

))
= log(ω(τ̄ )) − Fext(ω(τ̄ )), (3.73)

where ω(τ̄ ) is as in (3.56), whence

S(τ) = log

(
ω

(
τ − Fint

(
1

2

)))
− Fext

(
ω

(
τ − Fint

(
1

2

)))
. (3.74)
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Therefore, as τ → ∞, the problem (3.53–3.57) might be approximated by means of
(3.70), (3.71) where the function S(·) is defined by means of (3.56), (3.74). This “approxi-
mated transition problem” is the main ingredient in order to study the asymptotics of both
the transition problem (3.53–3.57) and the whole LSW model as τ → ∞.

3.4.3 On the Explicit Solution of the Approximate Transition Problem

The approximate transition problem (3.56), (3.70), (3.71), (3.74) can be explicitly solved.
We will assume by convenience that the function S(τ) defined by means of (3.74) has three
derivatives, something that due to (3.56), is equivalent to assuming that G0 is differentiable
enough.

We rewrite here the approximate transition problem for convenience. The problem is, the
following:

Problem 7 (Approximate transition problem) Given T0 > 0 and a strictly monotonic in-
creasing function S(·) defined in [T0,∞) satisfying 0 < S(τ) < τ for any τ ∈ [T0,∞) and
limτ→∞ S(τ) = ∞, to find a function β̄(τ ) defined for τ ∈ [S(T0),∞) such that for any
τ̄ > T0:

Xτ = −1

3
X2 + 3β̄(τ ), S(τ̄ ) < τ < τ̄ , (3.75)

X
(
(S(τ̄ ))+) = +∞, X

(
(τ̄ )−) = −∞. (3.76)

3.4.3.1 A Particular Solution of the Approximate Transition Problem There are several
different ways of solving the problem (3.75), (3.76). The method used in this Section is
convenient in order to treat perturbatively the whole transition problem (3.53–3.57).

Let us define for ζ ≥ ζ0 a function f (ζ ) ≥ S(T0) which is strictly monotonically increas-
ing and satisfying:

S(f (ζ + 1)) = f (ζ ), (3.77)

f (ζ0) = S(T0), (3.78)

where S(·) is the function in (3.76). Notice that (3.77), (3.78) do not define the function
f (ζ ) uniquely. However, if we prescribe an arbitrary function f (ζ ) in [ζ0, ζ0 + 1) satisfying
(3.78) we obtain a unique f defined in [ζ0,∞) iterating the formula:

f (ζ + 1) := S−1(f (ζ )), (3.79)

where S−1(·) is the inverse function of S(·) that is well defined due to our assumptions on
this last function.

In further computations we will need f to be three times differentiable. The function f

defined by means of (3.79) has this regularity if the function f (ζ ) defined in [ζ0, ζ0 +1) that
will be assumed to be monotonically increasing in this interval belongs to C3[ζ0, ζ0 +1] and
satisfies the following compatibility conditions:

f (ζ0) = f (ζ0 + 1), (3.80)

f ′(ζ0) = S ′(f (ζ0 + 1))f ′(ζ0 + 1), (3.81)

f ′′(ζ0) = S ′′(f (ζ0 + 1))(f ′(ζ0 + 1))2 + S ′(f (ζ0 + 1))f ′′(ζ0 + 1), (3.82)
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f ′′′(ζ0) = S ′′′(f (ζ0 + 1))(f ′(ζ0 + 1))3,

+ 3S ′′(f (ζ0 + 1))f ′(ζ0 + 1)f ′′(ζ0 + 1) + S ′(f (ζ0 + 1))f ′′′(ζ0 + 1). (3.83)

Under these assumptions the monotonically increasing function f defined by means of
(3.79) belongs to C3[ζ0,∞) and it satisfies:

lim
ζ→∞f (ζ ) = ∞.

Theorem 8 Given f ∈ C3[ζ0, ζ0 + 1] satisfying the compatibility conditions (3.80–3.83)
we can obtain f ∈ C3[ζ0,∞) by means of (3.79). Let us denote as {f, ζ } the Schwartzian
derivative of f and given by (cf. [5]):

{f, ζ } := f ′′′(ζ )

f ′(ζ )
− 3

2

(
f ′′(ζ )

f ′(ζ )

)2

. (3.84)

Then, the function β̄(τ ) defined in parametric form by means of:

β̄(τ ) = 1

(f ′(ζ ))2

(
1

2
{f, ζ } − π2

)
,

τ = f (ζ ) (3.85)

provides a particular solution of the approximate transition problem (3.75–3.76).

Proof Given f (·) as in the statement of the Theorem we define a new function χ(Y, ζ ) as:

χ(Y, ζ ) := 3Y

f ′(ζ )
+ 3f ′′(ζ )

2(f ′(ζ ))2
. (3.86)

Let us introduce the change of variables:

τ = f (ζ ), (3.87)

X = χ(Y, ζ ). (3.88)

Suppose that we take β̄(τ ) in (3.75), (3.76) as the one defined by means of the parametric
formula (3.85). Using the change of variables (3.87), (3.88) it turns out that the approximate
transition problem (3.75–3.76) becomes, after some lengthy computations:

dY

dζ
+ Y 2 + π2 = 0, ζ̄ < ζ < ζ̄ + 1, (3.89)

Y ((ζ̄ )+) = +∞, (3.90)

Y ((ζ̄ + 1)−) = −∞, (3.91)

where τ̄ = f (ζ̄ ).

Notice that a solution of (3.89–3.91), assuming that it exists, would provide an explicit
solution of (3.75), (3.76) β̄ given by (3.85) and the corresponding X(τ) given in parametric
form by means of (3.87), (3.88).
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Using the fact that (3.89) can be integrated explicitly we can obtain the solution of the
problem (3.89–3.91). Indeed, the unique solution of (3.89), (3.90) is given by:

Y = Y (ζ, ζ0) = π cot(π(ζ − ζ̄ )) (3.92)

and it can be immediately checked that Y (ζ, ζ0) satisfies (3.91), whence the Theorem fol-
lows. �

3.4.3.2 On the General Solution of the Approximate Transition Problem In this Subsec-
tion we obtain the general solution of (3.75–3.76). The main result is the following:

Theorem 9 Let us denote as β̄(τ ) an arbitrary solution of (3.75–3.76) given by (3.85) for
some fixed function f (ζ ). Then, an arbitrary solution β(τ) of (3.75–3.76) can be written in
the form:

β(τ) = β̄(τ ) + λ(ζ )

(f ′(ζ ))2
, (3.93)

where λ(·) satisfies:

λ(ζ̄ + 1) − λ(ζ̄ ) = 0. (3.94)

Proof Using the change of variables (3.87), (3.88) and introducing a new function Z by
means of

Y = π cot(π(ζ − ζ̄ − Z)) (3.95)

we transform (3.75–3.76) into

Zζ = sin2(π(ζ − ζ̄ − Z))

π2
λ(ζ ), (3.96)

Z(ζ ; ζ̄ ) = Z(ζ ; ζ̄ + 1) = 0, (3.97)

where we define λ(·) as:

λ(ζ ) := (β(τ ) − β̄(τ ))(f ′(ζ ))2.

Integrating (3.96) in the interval (ζ̄ , ζ̄ + 1) and using (3.97) we obtain

∫ ζ̄+1

ζ̄

sin2(π(ζ − ζ̄ − Z(ζ ; ζ̄ )))λ(ζ )dζ = 0. (3.98)

Differentiating (3.98) we arrive at:

∫ ζ̄+1

ζ̄

sin(2π(ζ − ζ̄ − Z(ζ, ζ̄ )))

(
1 + ∂Z(ζ, ζ̄ )

∂ζ̄

)
λ(ζ )dζ = 0. (3.99)

We can compute ∂Z(ζ,ζ̄ )

∂ζ̄
differentiating (3.96), (3.97) with respect to ζ̄ . Then:

(
∂Z

∂ζ̄

)
ζ

= − sin(2π(ζ − ζ̄ − Z(ζ, ζ̄ )))λ(ζ )

π

(
1 + ∂Z

∂ζ̄

)
, (3.100)
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∂Z

∂ζ̄
(ζ̄ , ζ̄ ) = ∂Z

∂ζ̄
(ζ̄ + 1, ζ̄ ) = 0. (3.101)

Solving (3.100), (3.101) we obtain:

∂Z

∂ζ̄
(ζ, ζ̄ ) = −

∫ ζ

ζ̄

e−ψ̄(ζ,ζ̄ )+ψ̄(η,ζ̄ ) ∂ψ(η, ζ̄ )

∂ζ
dη = (e−ψ̄(ζ,ζ̄ ) − 1), (3.102)

where

ψ(ζ, ζ̄ ) := 1

π

∫ ζ

ζ̄

sin(2π(η − ζ̄ − Z(η, ζ̄ )))λ(η)dη. (3.103)

Using (3.102) in (3.99) we deduce that:

0 =
∫ ζ̄+1

ζ̄

∂ψ(ζ, ζ̄ )

∂ζ
e−ψ(ζ,ζ̄ )dζ = e−ψ(ζ̄+1,ζ̄ ) − 1

or, equivalently

ψ(ζ̄ + 1, ζ̄ ) = 1

π

∫ ζ̄+1

ζ̄

sin(2π(ζ − ζ̄ − Z(ζ, ζ̄ )))λ(ζ )dζ = 0. (3.104)

Differentiating (3.104) with respect to ζ̄ and using again (3.102) we arrive at

∫ ζ̄+1

ζ̄

cos(2π(ζ − ζ̄ − Z(ζ, ζ̄ )))e−ψ(ζ,ζ̄ )λ(ζ )dζ = 0. (3.105)

Differentiating once more (3.105) with respect to ζ̄ and using (3.102), (3.104) we obtain

λ(ζ̄ + 1) − λ(ζ̄ ) =
∫ ζ̄+1

ζ̄

K(η, ζ̄ )λ(η)dη, (3.106)

where

K(η, ζ̄ ) :=
[

2π sin(2π(η − ζ̄ − Z(η, ζ̄ )))e−2ψ(η,ζ̄ )

+ cos(2π(η − ζ̄ − Z(η, ζ̄ )))e−ψ(η,ζ̄ ) ∂ψ(η, ζ̄ )

∂ζ̄

]
.

Using (3.103) it then follows that:

∫ ζ̄+1

ζ̄

K(η, ζ̄ )λ(η)dη =
∫ ζ̄+1

ζ̄

[
2π sin(2π(η − ζ̄ − Z(η, ζ̄ )))e−2ψ(η,ζ̄ )

+ cos(2π(η − ζ̄ − Z(η, ζ̄ )))e−ψ(η,ζ̄ ) ∂ψ(η, ζ̄ )

∂ζ̄

]
λ(η)dη

= 2π2
∫ ζ̄+1

ζ̄

∂ψ(η, ζ̄ )

∂ζ
e−2ψ(η,ζ̄ )dη
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− 1

π

∫ ζ̄+1

ζ̄

dηλ(η) cos(2π(η − ζ̄ − Z(η, ζ̄ )))e−ψ(η,ζ̄ )

×
∫ η

ζ̄

cos(2π(ξ − ζ̄ − Z(ξ, ζ̄ )))(1 + ∂Z

∂ζ̄
(ξ, ζ̄ ))λ(ξ)dξ

whence, using (3.102), (3.104), (3.105) we can then write:

∫ ζ̄+1

ζ̄

K(η, ζ̄ )λ(η)dη

= π2
(
1 − e−2ψ(ζ̄+1,ζ̄ )

) − 1

2π

(∫ ζ̄+1

ζ̄

cos(2π(η − ζ̄ − Z(η, ζ̄ )))e−ψ(η,ζ̄ )λ(η)dη

)2

= 0.

Plugging this formula into (3.106) we finally obtain (3.94) and the Theorem follows. �

Notice that the representation formula for the solutions of (3.75), (3.76) given in (3.94)
shows that the approximate transition problem has a very large degree of nonuniqueness.
Actually, this large degree of nonuniqueness is the same as the degree of nonuniqueness
in the choice of f (·) (cf. (3.77)). Moreover, formulas (3.93), (3.94) shows that two solu-
tions β(τ) of (3.75), (3.76) differ in a function λ(ζ )

(f ′(ζ ))2 . Actually this difference of terms is
very small compared with the leading order asymptotics of the function β(τ) as τ → ∞.

More precisely, for functions S satisfying (3.108) the term λ(ζ )

(f ′(ζ ))2 is basically the correc-
tion “beyond all the orders” whose analysis plays a crucial role in [14]. The analysis in this
Subsection avoids the use of explicit asymptotics for the function S and provides a much
simpler description of the transition of the characteristic curves across the critical line that
the one in that paper.

In the rest of this paper we approximate the dynamics of both the transition prob-
lem (3.53–3.57) and the whole LSW dynamics as perturbations of (3.94). The main result
of this paper is the possibility of describing the LSW dynamics as a perturbation of the
explicitly solvable problem studied in this Subsection.

3.4.3.3 Some Admissible Asymptotics for the Initial Data Let us mention a particular class
of functions S that we will use repeatedly in the following. Suppose that G0 satisfies:

G0(W) ∼ CWB(log(W))De−WA

as W → ∞, A > 0, B,D ∈ R. (3.107)

Using (3.56) we then obtain:

ω(τ) ∼ (τ )a as τ → ∞, a = 1

A
> 0.

It then follows from (3.74) that

S(τ) ∼ a log(τ ) as τ → ∞. (3.108)

We notice, for further reference that the functions with the asymptotics (3.107) satisfy:

G0(wext(−X0 − λ(X0)ζ ))

G0(wext(−X0))
= e−ζ(1+δ(X0,ζ )) as X0,→ ∞, (3.109)
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where wext is as in (3.59) limX0→∞ δ(X0, ζ ) → 0 uniformly in compact sets of ζ and:

λ(X0) ∼ 1

A

1

(X0)A
as X0 → ∞.

3.4.3.4 On the Asymptotics of the Function β(τ) It is interesting to verify that the func-
tion β(τ) defined by means of (3.85), (3.93) has the asymptotic behaviours computed in [6,
14] for functions S satisfying (3.108). Indeed, differentiating (3.77) three times and using
(3.108) we obtain the approximations:

af ′(ζ + 1) = f (ζ + 1)f ′(ζ ), (3.110)

f ′′(ζ + 1)

f ′(ζ + 1)
= f ′′(ζ )

f ′(ζ )
+ 1

a
f ′(ζ ), (3.111)

f ′′′(ζ + 1)

f ′(ζ + 1)
= f ′′′(ζ )

f ′(ζ )
+ 3

a
f ′′(ζ ) + 1

a2
(f ′(ζ ))2. (3.112)

Using (3.111), (3.112) in (3.84) we obtain the following transformation law for the
Schwartzian derivative:

{f, ζ } = − 1

2a2
(f ′(ζ − 1))2 + {f, ζ − 1}

and plugging this formula into (3.85) we obtain, using also (3.110):

β̄(f (ζ )) = −1

4

1

(f (ζ ))2
+

(
f ′(ζ − 1)

f ′(ζ )

)2

β̄(f (ζ − 1))

whence, using (3.77), (3.87), (3.110):

β̄(τ ) = −1

4

1

(τ )2
+

(
a

τ

)2

β̄(S(τ )). (3.113)

Iterating this formula we obtain the asymptotics:

β̄(τ ) ∼ −1

4

[
1

(τ )2
+ 1

(τ )2(log(τ ))2
+ 1

(τ )2(log(τ ))2(log(log(τ )))2
+ · · ·

]
(3.114)

as τ → ∞. This asymptotics has been obtained in [6, 14] using different methods. Let us
remark that the difference between the functions β(τ) and β̄(τ ) differs is a term smaller
than all the terms in the series on the right hand side of (3.114). Indeed, due to (3.94) it
follows that λ is bounded. Therefore, (3.93) implies that the difference β(τ)− β̄(τ ) is of
order 1

(f ′(ζ ))2 . Due to (3.110) we have that this term must be understood heuristically as

1

(f ′(ζ ))2
∼ 1

(τ log(τ ) log log(τ ) . . .)2
(3.115)

as τ → ∞, whence it is smaller than all the terms in (3.114). Corrective terms analogous
to (3.115) have been computed in [14] using more involved, explicit computations.

Notice that the asymptotics (3.115) cannot be understood in its strict mathematical
sense, but only in a heuristic way, because it is impossible to take a large number of log-
arithmic functions of a positive number τ without obtaining negative numbers. A longer,
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but somehow more precise way of giving a meaning to the asymptotics of a function
like h1,n(τ ) = log log log ..(n).. log(τ ) is replacing it by h̄1,n(τ ) = log(1 + log(1 + log(1 +
..(n)..(1 + log(τ + 1))))). In both cases we take n iterations of a basic functional block that
is log(·) in the first case and log(1 + ·) in the second. For any fixed value of n we have
h1,n(τ ) ∼ h̄1,n(τ ) as τ → ∞. The main advantage of the function h̄1,n(τ ) is that it can be
defined for any τ ≥ 0, while h1,n(τ ) is defined only for large values of τ. Actually this was
the approach used in [14] to give a meaning to the iterated logarithmic functions arising in
formulas like (3.115).

The main advantage of using the function f (ζ ) defined by means of (3.77), (3.78) in
order to study the transition problem is that it avoids the detailed study of the iterated log-
arithmic functions made in [14]. On the other hand, the argument above explains in an
alternative manner the onset of these iterated logarithmic series in [6, 14].

3.4.4 Long Time Asymptotics for the Transition Problem

In this Subsection we study the long time asymptotics for the transition problem (3.53–
3.57). We will assume from now on that ω(τ) in (3.56) is as differentiable as required by
the computations.

Some of the estimates formally derived in this and in the next Subsection have been rig-
orously proved in [15], where a different, simpler “transition problem” for the characteristic
curves near the critical line W = 1 has been studied using related ideas.

Our goal is to approximate this problem by means of the approximate transition problem
(3.75), (3.76). Let us denote as β̄(τ ) a solution of this problem given by (3.87), (3.85).

To study the long time asymptotics of the solutions of (3.53–3.57) we use a change of
variables similar to (3.87), (3.88), (3.95), namely:

τ = f (ζ ), (3.116)

W − 1 = 3Y

f ′(ζ )
+ 3f ′′(ζ )

2(f ′(ζ ))2
, (3.117)

Y = π cot(π(ζ − ζ̄ − Z)), (3.118)

where Z = Z(ζ, ζ̄ , ζ0), ζ0 = f −1(T0) and ζ̄ = f −1(τ̄ )− 1 and T0 is the starting point where
we begin solving the transition problem (cf. (3.78)) These changes transform (3.53–3.57)
into:

Zζ = sin2(π(ζ − ζ̄ − Z))

π2
[λ(ζ ) + R(Z, ζ, ζ̄ , ζ0)], (3.119)

Z = − 1

π
arccot

(
f ′(ζ0)

3π

(
ω(τ̄ ) − 1 − 3f ′′(ζ0)

2(f ′(ζ0))2

))
, ζ = ζ0, (3.120)

Z = 1

π
arccot

(
f ′(ζ̄ + 1)

3π

[
1

2
+ 3f ′′(ζ̄ + 1)

2(f ′(ζ̄ + 1))2

])
, ζ = ζ̄ + 1, (3.121)

where we have used that α = 1
2 and we define:

μ(ζ ) = β(τ) − β̄(τ ), (3.122)

λ(ζ ) = μ(ζ )(f ′(ζ ))2, (3.123)
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R(Z, ζ, ζ̄ , ζ0) = (f ′(ζ ))2

[
h1(W)

3
+ β(f (ζ ))h2(W)

]
, (3.124)

h1(W) = (W − 1)2

3
− 2 + 3W 1/3 − W, (3.125)

h2(W) = W 1/3 − 1. (3.126)

The problem (3.119–3.121) might be considered as a perturbation of the exactly solvable
problem (3.96), (3.97). It turns out, however, that the presence of the boundary conditions
(3.120), (3.121) instead of (3.97) introduce some “boundary effects” that we pass to discuss
in detail.

Many of the computations below are valid for rather general functions S(·). Nevertheless,
we will assume by definiteness that S satisfies (3.108). This includes in particular initial data
like the ones in (3.107). Under this assumption we can think on the function f (ζ ) in (3.87)
as

f (ζ ) ≈ exp

(
1

a
exp

(
· · ·

(
1

a
exp

(
ζ

a

))))
as ζ → ∞.

Several properties of the function f and its derivatives under the assumption (3.108) are
collected in Appendix 2.

Integrating (3.119) and using the boundary conditions (3.120), (3.121) we obtain:

∫ ζ̄+1

ζ0

sin2(π(ζ − ζ̄ − Z(ζ, ζ̄ , ζ0)))

π2
[λ(ζ ) + R(Z(ζ, ζ̄ , ζ0), ζ, ζ̄ , ζ0)]dζ

= θ(ζ̄ , ζ0) − (ζ0 − ζ̄ ), (3.127)

where

θ(ζ̄ , ζ0) := 1

π
arccot

(
f ′(ζ̄ + 1)

3π

[
1

2
+ 3f ′′(ζ̄ + 1)

2(f ′(ζ̄ + 1))2

])

+ 1

π
arccot

(
f ′(ζ0)

3π

(
ω(τ̄ ) − 1 − 3f ′′(ζ0)

2(f ′(ζ0))2

))
.

Equation (3.127) is reminiscent of (3.98). Actually, (3.127) can be transformed to a form
closer to (3.98) by means of some algebraic manipulations. Using the trigonometric identity
sin2(x) = 1

1+cot2(x)
as well as (3.118) we obtain:

sin2(π(ζ − ζ̄ − Z(ζ, ζ̄ , ζ0)))

π2
= 9

9π2 + (f ′(ζ ))2
(
W − 1 − 3f ′′(ζ )

2(f ′(ζ ))2

)2 . (3.128)

Therefore, the second term on the left of (3.127) becomes:

∫ ζ̄+1

ζ0

sin2(π(ζ − ζ̄ − Z(ζ, ζ̄ , ζ0)))

π2
R(Z(ζ, ζ̄ , ζ0), ζ, ζ̄ , ζ0)dζ − (ζ̄ − ζ0)

=
∫ ζ̄+1

ζ0

[
3(f ′(ζ ))2h1(W)

9π2 + (f ′(ζ ))2
(
W − 1 − 3f ′′(ζ )

2(f ′(ζ ))2

)2 − χ(ζ̄ − ζ )

]
dζ
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+
∫ ζ̄+1

ζ0

9(f ′(ζ ))2β(f (ζ ))h2(W)

9π2 + (f ′(ζ ))2
(
W − 1 − 3f ′′(ζ )

2(f ′(ζ ))2

)2 dζ

:= I1 + I2,

where χ(s) = 1, s ≥ 0, χ(s) = 0, s < 0, and h1(W), h2(W) are as in (3.125), (3.126).
Since β(τ) → 0 we can approximate the function W in the integrals I1, I2 as

W ∼ wext(f (ζ ) − f (ζ̄ )) (3.129)

for ζ0 ≤ ζ ≤ ζ̄ + δ1(ζ̄ ), where δ1(ζ̄ ) ∼ 1
(f ′(ζ̄ ))γ

where from now on γ is a generic positive
constant. Moreover:

W ∼ wint(f (ζ ) − f (ζ̄ + 1) − Fint(α)) (3.130)

for (ζ̄ + 1) − δ2(ζ̄ ) ≤ ζ ≤ ζ̄ + 1, where δ2(ζ̄ ) ∼ 1
(f ′(ζ̄+1))γ

. Due to the fast growth of the
function f (ζ ) as ζ → ∞, it turns out that the main contribution to the integrals I1, I2 is due
to the intervals [ζ0, ζ̄ + δ1(ζ̄ )]. Then:

I1 ∼
∫ ζ̄+δ1(ζ̄ )

ζ0

�1(f (ζ ) − f (ζ̄ ))dζ,

I2 ∼
∫ ζ̄+δ1(ζ̄ )

ζ0

�2(f (ζ ) − f (ζ̄,))dζ,

where

�1(f (ζ ) − f (ζ̄ )) :=
[

3(f ′(ζ ))2h1(wext(f (ζ ) − f (ζ̄ )))

9π2 + (f ′(ζ ))2
(
wext(f (ζ ) − f (ζ̄ )) − 1 − 3f ′′(ζ )

2(f ′(ζ ))2

)2 − χ(ζ̄ − ζ )

]
,

�2(f (ζ ) − f (ζ̄ )) := 9(f ′(ζ ))2β(f (ζ ))h2(wext(f (ζ ) − f (ζ̄ )))

9π2 + (f ′(ζ ))2
(
wext(f (ζ ) − f (ζ̄ )) − 1 − 3f ′′(ζ )

2(f ′(ζ ))2

)2 .

Notice that, due to the exponential decay of wext(s), �1(f (ζ ) − f (ζ̄ )) decays exponen-
tially as (ζ̄ − ζ ) → ∞, and |�1(f (ζ ) − f (ζ̄ ))| ≤ C

f ′(ζ̄ )

1
(ζ−ζ̄ )3 as (ζ − ζ̄ ) → ∞. Using the

properties of f (ζ ) in Appendix 2 it follows that:

∫ ζ̄+δ1(ζ̄ )

ζ0

�1(f (ζ ) − f (ζ̄ ))dζ ∼ 1

f ′(ζ̄ )

∫ ∞

−∞
�1(s − f (ζ̄ ))ds := a

f ′(ζ̄ )
.

On the other hand, since β(f (ζ )) decays like 1
(f ′(ζ̄ ))1+γ we obtain that the term I2 might

be estimated in a similar manner. Similar estimates can be obtained for the derivatives of I1,

I2 (cf. [15]). Therefore, (3.127) can be approximated as:

∫ ζ̄+1

ζ0

sin2(π(ζ − ζ̄ − Z(ζ, ζ̄ , ζ0)))λ(ζ )

π2
dζ = θ(ζ̄ , ζ0) − ε(ζ̄ ), (3.131)

where |ε(ζ̄ )| ≤ C

f ′(ζ̄ )
.

We have then reduced the study of the transition problem to the integral equation (3.131).

Notice that (3.128) implies that the kernel sin2(π(ζ−ζ̄−Z(ζ,ζ̄ ,ζ0)))

π2 becomes negligible as soon
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as (W − 1) becomes of order one. This suggests the following rough approximation for
(3.131):

∫ ζ̄+1

ζ̄

sin2(π(ζ − ζ̄ − Z(ζ, ζ̄ , ζ0)))λ(ζ )

π2
dζ = θ(ζ̄ , ζ0) − ε(ζ̄ , ζ0). (3.132)

This equation is a nonhomogeneous version of (3.98). Notice that the right-hand side
of (3.132) is bounded by C

(f ′(ζ̄ ))γ
, and similar estimates can be obtained for the derivatives

(cf. [15]). Arguing then as in Sect. 3.4.3, and including in the error terms the contributions
of R in (3.119), we can transform (3.132) into

λ(ζ̄ + 1) − λ(ζ̄ ) = O

(
1

(f ′(ζ̄ ))γ

)
(3.133)

as ζ̄ → ∞. This equation might be solved by iteration. Due to the fast growth of the function
f ′(ζ̄ ) the resulting function λ(ζ̄ ) is globally bounded. More precisely, the function λ(ζ̄ )

approaches asymptotically to a periodic function with period one as ζ̄ → ∞. Due to (3.122),
(3.123) it follows that β̃(τ ) and β̄(τ ) differ in a very small function as τ → ∞.

The approximation of analysis of (3.131) by means of (3.132) must be made more care-
fully because the three differentiations of (3.132) require to differentiate (3.128) and this
yields terms containing derivatives of λ that must be examined in detail.

More precisely, differentiating (3.131) and using (3.128) we obtain, to the leading order:

d(θ(ζ̄ , ζ0) − ε(ζ̄ , ζ0))

dζ̄

= 9

(f ′(ζ̄ + 1))2

λ(ζ̄ + 1)

( 1
2 )2

+
∫ ζ̄+1

ζ0

d

dζ̄

(
sin2(π(ζ − ζ̄ − Z))

π2

)
λ(ζ )dζ. (3.134)

Combining (3.128), (3.130) we derive the following approximation for sin2(π(ζ−ζ̄−Z))

π2 in
the region ζ ≈ ζ̄ + 1:

sin2(π(ζ − ζ̄ − Z))

π2
∼ 9�(f (ζ ) − f (ζ ) − Fint(α))

(f ′(ζ ))2
,

where:

�(s) = 1

(wint(s) − 1)2
.

Therefore, we derive the following approximations, for the derivatives of sin2(π(ζ−ζ̄−Z))

π2

in the region ζ ≈ ζ̄ + 1:

d

dζ̄

(
sin2(π(ζ − ζ̄ − Z))

π2

)
∼ −9�′(f (ζ ) − f (ζ̄ + 1) − Fint(α))

f ′(ζ )
,

d2

dζ̄ 2

(
sin2(π(ζ − ζ̄ − Z))

π2

)
∼ 9�′′(f (ζ ) − f (ζ̄ + 1) − Fint(α)),

d3

dζ̄ 3

(
sin2(π(ζ − ζ̄ − Z))

π2

)
∼ −9f ′(ζ̄ + 1)�′′(f (ζ ) − f (ζ̄ + 1) − Fint(α)),
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where we have used the properties of the function f in Appendix 2. Differentiating (3.134),

using the previous approximations for the derivatives of sin2(π(ζ−ζ̄−Z))

π2 , and neglecting the
smaller contributions multiplying the terms λ(ζ̄ + 1) or its derivatives we arrive at:

d2(θ(ζ̄ , ζ0) − ε(ζ̄ , ζ0))

dζ̄ 2

= 9

(f ′(ζ̄ + 1))2

λ′(ζ̄ + 1)

( 1
2 )2

− 9�′(−Fint(
1
2 ))

f ′(ζ̄ + 1)
λ(ζ̄ + 1)

+
∫ ζ̄+1

ζ0

d2

dζ̄ 2

(
sin2(π(ζ − ζ̄ − Z))

π2

)
λ(ζ )dζ, (3.135)

d3(θ(ζ̄ , ζ0) − ε(ζ̄ , ζ0))

dζ̄ 3

= 9

(f ′(ζ̄ + 1))2

λ′′(ζ̄ + 1)

( 1
2 )2

− 9�′(−Fint(
1
2 ))

f ′(ζ̄ + 1)
λ′(ζ̄ + 1) + 9�′′

(
−Fint

(
1

2

))
λ(ζ̄ + 1)

+
∫ ζ̄+1

ζ0

d3

dζ̄ 3

(
sin2(π(ζ − ζ̄ − Z))

π2

)
λ(ζ )dζ. (3.136)

We now derive approximations for the terms d2

dζ̄ 2 (
sin2(π(ζ−ζ̄−Z))

π2 ), d3

dζ̄ 3 (
sin2(π(ζ−ζ̄−Z))

π2 ) in

(3.136), (3.135). In order to compute an approximation for these terms in the region ζ ≈ ζ̄

we use (3.128), (3.129). Then:

sin2(π(ζ − ζ̄ − Z))

π2
∼ 9�(f (ζ ) − f (ζ̄ ))

(f ′(ζ ))2

and differentiating this formula we then arrive at:

d

dζ̄

(
sin2(π(ζ − ζ̄ − Z))

π2

)
∼ −9� ′(f (ζ ) − f (ζ̄ ))

f ′(ζ )
,

d2

dζ̄ 2

(
sin2(π(ζ − ζ̄ − Z))

π2

)
∼ 9� ′′(f (ζ ) − f (ζ̄ )),

d3

dζ̄ 3

(
sin2(π(ζ − ζ̄ − Z))

π2

)
∼ −9f ′(ζ )� ′′(f (ζ ) − f (ζ̄ )).

On the other hand, in order to estimate the term sin2(π(ζ−ζ̄−Z))

π2 in the region [ζ̄ +δ1(ζ̄ ), ζ̄ +
1 − δ2(ζ̄ )] we will assume that the term Z might be neglected and therefore

sin2(π(ζ − ζ̄ − Z))

π2
∼ sin2(π(ζ − ζ̄ ))

π2
. (3.137)

This approximation is useful to simplify the computations. Its validity will be discussed
below in detail. Using (3.137), (3.135) becomes:
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d3(θ(ζ̄ , ζ0) − ε(ζ̄ , ζ0))

dζ̄ 3

= 9

(f ′(ζ̄ + 1))2

λ′′(ζ̄ + 1)

( 1
2 )2

− 9�′(−Fint(
1
2 ))

f ′(ζ̄ + 1)
λ′(ζ̄ + 1) + 9�′′

(
−Fint

(
1

2

))
λ(ζ̄ + 1)

−9
∫ ζ̄+1

ζ̄+1−δ2(ζ̄ )

f ′(ζ )�′′′
(

f (ζ ) − f (ζ̄ + 1) − Fint

(
1

2

))
λ(ζ )dζ

−9
∫ ζ̄+δ1(ζ̄ )

ζ0

f ′(ζ )� ′′′(f (ζ ) − f (ζ̄ ))λ(ζ )dζ

−4π2
∫ ζ̄+1

ζ̄

sin(2π(ζ − ζ̄ ))λ(ζ )dζ. (3.138)

In order to estimate the term
∫ ζ̄+1

ζ̄
sin(2π(ζ − ζ̄ ))λ(ζ )dζ in (3.138) we use similar ap-

proximations in (3.134). Plugging the resulting formula into (3.138) to obtain:

1

(f ′(ζ̄ + 1))2

λ′′(ζ̄ + 1)

( 1
2 )2

− �′(−Fint(
1
2 ))

f ′(ζ̄ + 1)
λ′(ζ̄ + 1) + �′′

(
−Fint

(
1

2

))
λ(ζ̄ + 1)

−
∫ ζ̄+1

ζ0

f ′(ζ )�′′′
(

f (ζ ) − f (ζ̄ + 1) − Fint

(
1

2

))
λ(ζ )dζ

−
∫ ζ̄+δ1(ζ̄ )

ζ0

f ′(ζ )� ′′′(f (ζ ) − f (ζ̄ ))λ(ζ )dζ

= O

(
1

(f (ζ̄ ))γ

)
(3.139)

as ζ̄ → ∞. We have used the fast decay of the term �′′′(s), in order to replace the lower
extreme of integration in the first integral by ζ0.

The integrodifferential equation (3.139) is the basic equation that describes the evolution
of the function λ(ζ ), or equivalently β(τ). More precisely, given ω(τ) as in (3.56) we
determine β(τ) as follows. First we compute S(τ) using (3.74). We can then compute the
functions f (ζ ) and β̄(τ ) using (3.79) and (3.85). Solving (3.139) we obtain the function
λ(ζ ) that allows to compute β(τ) by means of (3.122), (3.123).

Equation (3.139) has two different time scales as τ → ∞. Indeed, since d
dτ

= 1
f ′(ζ )

d
dζ

, it

follows that the natural time scale for the terms containing the derivatives is δζ ≈ 1
f (ζ̄+1)

,

or equivalently δτ ≈ 1. On the other hand, the integral terms might be approximated, for
functions λ that are approximately constant in the time scale τ as Dirac masses in ζ = ζ̄ ,

ζ = ζ̄ + 1 respectively. In particular these terms alone would transform (3.139) in a delay
equation of the form (3.133). In the original time variable τ this delay equation would relate
the values of λ at times τ and S(τ). In particular, under the assumption (3.108), S(τ) varies
in a very slow, “adiabatic” manner in the time scale τ. It is shown in Appendix 3 that, if the
second integral term is frozen, the remaining terms in (3.139) yield stabilization to steady
states in times δζ ≈ 1

f (ζ̄+1)
, or equivalently in times δτ ≈ 1. This implies that the function

λ becomes approximately constant in time intervals or size δτ ≈ 1. Therefore, the integral
terms might be approximated as Dirac masses and (3.139) becomes (3.133). The amount of
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mass concentrated in the Dirac masses can be computed using:

�′′(−Fint(α)) − 9
∫ 0

−∞
�′′′(s − Fint(α))ds =

∫ ∞

−∞
� ′′′(s)ds = 2

9
.

Let us discuss now the validity of the assumption (3.137). Notice that due to (3.119–
3.121) the order of magnitude of Z is the same as the one of λ in the region where ζ − ζ̄ is
of order one. Nevertheless, due to the arbitrariness of f (ζ ) would be possible to choose λ

small for large ζ and (3.133) would imply that λ is small for large ζ. In any case, since the
order of magnitude of λ is one, the argument above is not completely rigorous. However,
the argument could be made keeping the term Z in (3.137) in the derivation of (3.139).
In particular this would introduce several additional terms containing Z and its derivatives
similar to the ones in Sect. 3.4.3. Detailed, although more technical computations, following
this approach can be found in [15]. Nevertheless, the final result is again (3.139). Therefore
the analysis above can be kept without major changes.

It is interesting to discuss the meaning of the two different time scales in the integrodif-
ferential equation (3.139). The time scale (τ̄ − τ) of order one in which stabilization takes
place is associated to the effect of the characteristics that are placed in the region W ∈ [0,1).

These characteristics yield stabilization of the dynamics of the LSW model to the simplified
dynamics (3.133). This simplified equation indicates that in some sense, the solutions of the
transition problem (3.53–3.57) are able to “see” the values of the function β̄(τ̄ ) at the times
τ = S(τ̄ ), that is the time when the characteristic that reaches the value W = α for τ = τ̄

arrived to that critical line.
From now on, in order to distinguish the characteristic curves associated to the whole

LSW model and the trajectories associated to the solutions of (3.53), (3.54) with the func-
tion β(τ) = β̃(τ ) solving the transition problem we will denote from now on as W̄ (τ ;W0)

the solutions of (3.53), (3.54) in this last case. We will denote as W̄0(τ ;W) the inverse
function of W̄ (τ ; ·) for each fixed τ ≥ 0. Then:

W̄ (τ ; W̄0(τ ;W)) = W. (3.140)

Notice that with this notation (3.55) becomes:

W̄ (τ ;ω(τ)) = 1

2
. (3.141)

3.5 Linearizing the LSW Model Near Self-Similar Solutions

In this Section we will use ideas analogous to those in the previous subsection to linearize
near self-similar solutions the whole LSW model and not just the transition problem (3.53–
3.57).

We notice that the volume conservation condition (2.5), combined with the evolution
of G along characteristic curves (3.14) is equivalent to∫ ∞

0
G(W,τ)dW = eτ

∫ ∞

0
G0(W0(τ ;W))dW, (3.142)

where the function W0(τ ;W) is as in (3.20).
On the other hand, using (3.24), we obtain

eτ

∫ 1

0
G0(ω(τ + Fint(W) − Fint(α) + ε(τ,W,α)))dW +

∫ ∞

1
G(W,τ)dW

= eτ

∫ ∞

W0(τ ;0)

G0(W0(τ ;W))dW, (3.143)

where ε(τ,W,α) satisfies (3.22) and α = 1
2 .
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Combining (3.142), (3.143) we obtain:

∫ 1

0

[
G0(W0(τ,W)) − G0

(
ω

(
τ + Fint(W) − Fint

(
1

2

)
+ ε

(
τ,W,

1

2

)))]
dW

= e−τ

∫ ∞

1
G(W,τ)dW.

Using the first and the last terms in (3.24) it then follows that

∫ 1

0
e−Fint(W)

[
G0(W0(τ,W))

G0(ω(τ + Fint(W) − Fint(
1
2 ) + ε(τ,W, 1

2 )))
− 1

]
dW = ε(τ ), (3.144)

where

ε(τ ) := (1 + o(1))

∫ ∞

1
G(W,τ)dW as τ → ∞.

Notice that, the term
∫ ∞

1 G(W,τ)dW contains the mass of the particles in the supercrit-
ical region. For functions behaving in a self-similar manner as τ → ∞ this integral can be
expected to be very small (actually exponentially small). We will then assume this in the rest
of the argument and examine the contributions of the left-hand side of (3.144).

Suppose that W̄0(τ,W) is as in (3.140). It then follows from (3.21) and (3.141) that
W̄0(τ,W) = ω(τ + Fint(W) − Fint(

1
2 ) + ε(τ,W, 1

2 )). On the other hand we will assume in
all this Subsection that G0 satisfies (3.109). Then (3.144) becomes, to the leading order:

∫ 1

0
e−Fint(W) ·

[
exp

(
− W0(τ,W) − W̄0(τ,W)

λ(w−1
ext (W̄0(τ,W)))W̄0(τ,W)

)
− 1

]
dW

= ε(τ ), (3.145)

where we are using (3.58), (3.59) and where, from now on, we will include in ε(τ ) additional
corrective terms that converge to zero as τ → ∞. Notice that in the derivation of (3.145) we
assume that the term inside the exponential is bounded. Moreover, we will assume also that
W0(τ,W)

W̄0(τ,W)
→ 1. These assumptions will be justified “a posteriori” in a self-consistent manner,

checking that the equations derived with these assumptions imply them. Linearizing then
the exponential term we arrive at:

∫ 1

0

e−Fint(W)

λ(w−1
ext (W̄0(τ,W)))

(
W0(τ,W)

W̄0(τ,W)
− 1

)
dW = ε(τ ). (3.146)

In order to study the behaviour of the solutions of (4) we use again the change of variables
(3.116–3.118). Let us denote from now on as λ̄(ζ ), Z̄(ζ, ζ̄ , ζ0) the approximated solution
constructed in Sect. 3.4.4. Let us write U := Z − Z̄. Linearizing in (3.119–3.121) it follows
that:

Uζ = a(ζ )U + sin2(π(ζ − ζ̄ − Z̄))

π2
σ(ζ ),

U(ζ̄ + 1) = 0,

where

a(ζ ) := ∂

∂Z

(
sin2(π(ζ − ζ̄ − Z̄))

π2

)∣∣∣∣
Z=Z̄

λ̄(ζ )+ ∂

∂Z

(
sin2(π(ζ − ζ̄ − Z̄))R(Z, ζ, ζ̄ )

π2

)∣∣∣∣
Z=Z̄

.
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Our goal is to estimate U(ζ0), that is given by:

U(ζ0) = −
∫ ζ̄+1

ζ0

e
∫ ζ̄+1
η a(ξ)dξ sin2(π(ζ − ζ̄ − Z̄))

π2
σ(ζ )dζ. (3.147)

It turns out that the integral term in (3.147) is small, because the term containing
R(Z, ζ, ζ̄ ) might be estimated as in Sect. 3.4.4, and the term containing λ̄(ζ ) can be es-
timated using the fact that λ̄ is small. Therefore, to the leading order:

U(ζ0) = −
∫ ζ̄+1

ζ0

sin2(π(ζ − ζ̄ − Z̄))

π2
σ(ζ )dζ. (3.148)

We now recall that our goal is to estimate the term in (4). To this end we use the change
of variables (3.117), (3.118) that yields:

W0(τ,W) = 1 + 3π cot(π(ζ − ζ̄ − Z̄ − U))

f ′(ζ )
+ 3f ′′(ζ )

2(f ′(ζ ))2
at ζ = ζ0,

W̄0(τ,W) = 1 + 3π cot(π(ζ − ζ̄ − Z̄))

f ′(ζ )
+ 3f ′′(ζ )

2(f ′(ζ ))2
at ζ = ζ0.

In order to compute the difference (W0(τ,W) − W̄0(τ,W)) we use the trigonometric

formula cot(A − B) − cot(A) = 1+cot2(A)

cot(B)−cot(A)
. Then, after some computations we obtain:

∫ 1

0

e−Fint(W)

λ(w−1
ext (W̄0(τ,W)))

(
W0(τ,W)

W̄0(τ,W)
− 1

)
dW

=
∫ 1

0

e−Fint(W)

λ(w−1
ext (W̄0(τ,W)))

cot(π(ζ0 − ζ̄ − Z̄))

cot(π(ζ − ζ̄ − Z̄)) − cot(πU)
dW

= ε(τ ).

Notice that π(ζ0 − ζ̄ − Z̄) � 1. On the other hand we will assume, something to be
checked “a posteriori” that |U | � (ζ0 − ζ̄ − Z̄). Then cot(πU) 
 cot(π(ζ − ζ̄ − Z̄)),

whence, to the leading order

∫ 1

0

e−Fint(W)

λ(w−1
ext (W̄0(τ,W)))

cot(π(ζ0 − ζ̄ − Z̄))

cot(πU)
dW = ε(τ ).

Using the formula cot(x) ∼ 1
x

as x → 0, it follows that:

∫ 1

0

[
e−Fint(W)U(ζ0, ζ̄ ,W)

]
dW

= [−ε(τ ) + ε̃(τ )]λ(w−1
ext (W̄0(τ,α)))

π cot(π(ζ0 − ζ̄ − Z̄(ζ0, ζ̄ , α)))
:= υ(τ),

where U is given by (3.148) and where, from now on, υ(τ) is a generic function satisfying
υ(τ) = O( 1

(f (ζ ))β
) as ζ → ∞, for some β > 0. Then:

∫ ζ̄+1

ζ0

[∫ 1

0
e−Fint(W) sin2(π(ζ − ζ̄ − Z̄(ζ0, ζ̄ ,W)))

π2
dW

]
σ(ζ )dζ = υ(τ). (3.149)
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This equation can be studied basically in the same manner as (3.131) with the only dif-
ference that there is an integration on the variable W, instead of just the particular choice of
α = 1

2 that was made in the transition problem.
Equation (3.149) can be analyzed in a manner analogous to (3.131). Arguing as in the

derivation of (3.139) we obtain:

d3(υ)

dζ̄ 3
+ 4π2 d

dζ̄
(υ)

= 9λ′′(ζ̄ + 1)

(f ′(ζ̄ + 1))2

∫ 1

0

e−Fint(W)dW

(W − 1)2
− 9λ′(ζ̄ + 1)

f ′(ζ̄ + 1)

∫ 1

0
e−Fint(W)�′(−Fint(W))dW

+9λ(ζ̄ + 1)

∫ 1

0
e−Fint(W)�′′(−Fint(W))dW

−9
∫ ζ̄+1

ζ0

f ′(ζ )

[∫ 1

0
e−Fint(W)�′′′(f (ζ ) − f (ζ̄ + 1) − Fint(W))dW

]
λ(ζ )dζ

−9
∫ ζ̄+δ1(ζ̄ )

ζ0

f ′(ζ )� ′′′

×
(

f (ζ ) − f

(
f −1

(
f (ζ̄ + 1) + Fint(W) − Fint

(
1

2

))
− 1

))
λ(ζ )dζ. (3.150)

Equation (3.150) might be analysed exactly as (3.139) in Sect. 3.4.4. As in that case this
equation has two different time scales. The shorter time scale is of order 1

f ′(ζ̄+1)
and is the

scale associated to the terms containing derivatives on λ as well as the integral terms. The
resulting operators yield stable behaviour as proved in Appendix 3. Then, in the longer time
scale where ζ̄ varies quantities of order one we can approximate (3.150) as in Sect. 3.4.4 to
obtain:

λ(ζ̄ + 1) − λ(ζ̄ ) = 1

2

[
d3(υ)

dζ̄ 3
+ 4π2 d

dζ̄
(υ)

]
(3.151)

and the desired stability of the self-similar behaviour follows.

4 Concluding Remarks

In this paper, a formalism that allows to approximate asymptotically the noncompactly sup-
ported solutions of the LSW that approach to self-similar solutions has been developed. An
analogous, although fully rigorous analysis was made in [12, 13] for compactly supported
initial data. As in the case of compactly supported initial data we have obtained that the
resulting LSW dynamics might be approximated by means of integro-differential equations.
There are, however, several crucial differences between both cases. In the compactly sup-
ported case, at a given time, the only particles that are relevant in the description of the long
time asymptotics of the solutions are those who are vanishing in a time of order one. On
the contrary, in the noncompactly supported case, there are two groups of particles playing
a relevant role in the description of the dynamics of the LSW model near self-similar solu-
tions. A first group is the set of particles whose remaining life-time is of order one, exactly
as in the compactly supported case. On the other hand, the subset of the family of particles
with a long life-time expectancy, whose radius is close to the so-called critical radius plays
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also a relevant role in the dynamics of the LSW system for noncompactly supported data.
This fact does not have a natural correspondence in the compactly supported case. From the
mathematical point of view, the main consequence is that, for compactly supported solu-
tions, the LSW dynamics might be approximated by means of a set of integral equations of
convolution type with fast decaying kernels. In the noncompactly supported case the final
equations describing the evolution of the solutions are integro-differential equations having
two time scales that can be studied using multiple scale methods.

The analysis in this paper suggests that there exists a large class of noncompactly sup-
ported initial data yielding self similar behaviours for long times. However, it has been also
shown that not all the initial data yield such self-similar behaviour.

Acknowledgements I thank B. Niethammer for several illuminating discussions during the realization of
this work, as well as an anonymous referee for very clarifying remarks. This work is partially supported by
DGES Project MTM2004-05634.

Appendix 1: A Local Existence Theorem for the Transition Problem

In this Appendix we prove that the transition problem (3.53–3.57) is locally solvable in time.

Theorem 10 Let us define W(s;W0) as the solution of the problem:

Ws = −2 + 3W 1/3 − W + 3β(s)W 1/3, (5.1)

W(0;W0) = W0. (5.2)

Then, for a given function ω(·) ∈ C1[0, δ] for some δ > 0 and satisfying ω(0) = α, α ∈
(0,1) there exists an unique continuous function β(·) defined in s ∈ [0, T ], for some T > 0
such that:

W(τ ;ω(τ)) = α (5.3)

for τ ∈ [0, T ]. Moreover, suppose that for some W̄0 > 0 and β(s) defined in s ∈ [0, τ̄ ] the
function W(s; W̄0) is defined and it remains positive in the interval s ∈ [0, τ̄ ]. Then, for any
function ω(·) ∈ C1[τ̄ , τ̄ + δ] for some δ > 0, there exists β(·) defined in s ∈ [τ̄ , τ̄ + T ] such
that (5.3) holds for τ ∈ [τ̄ , τ̄ + T ].

Proof The proof is just a fixed point argument. Integrating both sides of (5.1) with W0 =
ω(τ) we obtain:

W(τ ;ω(τ)) − ω(τ)

=
∫ τ

0

[−2 + 3(W(s;ω(τ)))1/3 − W(s;ω(τ)) + 3β(s)(W(s;ω(τ)))1/3
]
ds.

Using (5.3) this equation becomes:

α −ω(τ) =
∫ τ

0

[−2 + 3(W(s;ω(τ)))1/3 −W(s;ω(τ))+ 3β(s)(W(s;ω(τ)))1/3
]
ds. (5.4)
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Differentiating (5.4) and using again (5.3) we obtain:

−ω′(τ ) = [−(2 + α) + 3(α)1/3
] + 3(α)1/3β(τ)

+ ω′(τ )

∫ τ

0

[
(W(s;ω(τ)))−2/3 − 1 + β(s)(W(s;ω(τ)))−2/3

]∂W(s;ω(τ))

∂W0
ds.

(5.5)

Differentiating (5.1), (5.2) with respect to W0 and integrating the resulting differential
equation we obtain:

∂W(s;ω(τ))

∂W0
= exp

(∫ s

0

[
(W(ξ ;ω(τ)))−2/3 − 1 + β(ξ)(W(ξ ;ω(τ)))−2/3

]
dξ

)

and plugging this formula into (5.5) we obtain the equation:

3α1/3β(τ) + ω′(τ )

∫ τ

0

[
(W(s;ω(τ)))−2/3 − 1 + β(s)(W(s;ω(τ)))−2/3

]

× e
∫ s

0 [(W(ξ ;ω(τ)))−2/3−1+β(ξ)(W(ξ ;ω(τ)))−2/3]dξ ds

= −ω′(τ ) + [
(2 + α) − 3(α)1/3

]
, (5.6)

where:

W(s;ω(τ))

= ω(τ) +
∫ τ

0

[−2 + 3(W(s;ω(τ)))1/3 − W(s;ω(τ)) + 3β(s)(W(s;ω(τ)))1/3
]
ds. (5.7)

Equation (5.6), (5.7) can be solved using a contractive fixed point argument on the space
β(·) ∈ C[0, T ] with the uniform norm. �

Appendix 2: Some Properties of the Function f (ζ )

In this Appendix we collect several properties of the function f (ζ ) that have been used
repeatedly in Sect. 3. The main result of this Appendix is the following:

Theorem 11 Suppose that S satisfies (3.108). Given f ∈ C3[ζ0, ζ0 + 1] satisfying the com-
patibility conditions (3.80–3.83) we define a function f ∈ C3[ζ0, ζ0 + 1) by means of (3.77),
(3.78). Then, f satisfies the following:

f (ζ ) 
 exp(exp(exp(. . . exp(ζ )))) as ζ → ∞ (6.1)

for any finite number of iterated exponentials.

f (k−1)(ζ ) � f (k)(ζ ) � (f (ζ ))1+ε as ζ → ∞ (6.2)

for any ε > 0, and any k = 1,2,3.

f (ζ + δ) 
 f (ζ ) as ζ → ∞ (6.3)
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for any δ > 0.

f

(
ζ + C

f (ζ )

)
∼ f (ζ ) as ζ → ∞ (6.4)

for any C > 0.

Proof Property (6.1) just follows iterating (3.77) more than k times. Property (6.3) can be
proved in a similar manner. Indeed, iterating (3.77) by means of an exponential function it
follows that,since f (ζ ) → ∞, that f (ζ + δ) − f (ζ ) → ∞, Then

f (ζ + δ) = S−1(f (ζ + δ − 1)) = S−1([f (ζ + δ − 1) − f (ζ − 1)] + f (ζ − 1))


 S−1(f (ζ − 1)) = f (ζ )

as ζ → ∞.

Property (6.2) follows differentiating (3.77) that yields

f ′(ζ ) = S ′(f (ζ + 1))f ′(ζ + 1) ∼ a

f (ζ + 1)
f ′(ζ + 1). (6.5)

Iterating (5) to estimate f ′(ζ + 1) it follows from (6.1) that f ′(ζ ) → ∞. Combining this
with (5) we obtain the first inequality in (6.2) with k = 1. On the other hand, combining
(3.77) and (5) we obtain

f ′(ζ + 1)

f (ζ + 1)
=

[
1

S ′(f (ζ + 1))

f (ζ )

S−1(f (ζ ))

]
f ′(ζ )

f (ζ )
. (6.6)

The term between brackets is bounded by Cf (ζ ). Iterating (6.6) we obtain

f ′(ζ0 + n)

f (ζ0 + n)
=

n−1∏
�=0

[
1

S ′(f (ζ0 + 1 + �))

f (ζ0 + �)

S−1(f (ζ0 + �))

]
f ′(ζ0)

f (ζ0)
. (6.7)

The product in (6.7) can be bounded as

n−1∏
�=0

[Cf (ζ0 + �)] (6.8)

and taking the logarithm of this expression and taking into account that f (ζ+1)

f (ζ )
≥ 2 for ζ

large enough we obtain, after adding a geometric series, an upper estimate for the product
in (6.8) of the form

exp(B log(f (ζ0 + n − 1))) = (f (ζ0 + n − 1))B

for some B > 0, whence (6.7) yields

f ′(ζ ) ≤ Cf (ζ )(f (ζ − 1))B (6.9)

and since (3.77) implies that f (ζ − 1) ≤ C log(f (ζ )) we obtain (6.2) for k = 1. The proof
of (6.2) for k = 2,3 is similar.
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In order to show (4) we iterate (3.77) to compute f (ζ + C
f (ζ )

)

f

(
ζ + C

f (ζ )

)
= S−1

(
S−1

(
. . . S−1

(
f

(
ζ + C

f (ζ )
− n

))))
,

where the number of iterations n is such that ζ + C
f (ζ )

− n ∈ [ζ0, ζ0 + 1]. Since f (ζ ) is huge

we can approximate the terms S−1(f (ζ + C
f (ζ )

−n)) as S−1(f (ζ−)n)+ C(S−1)′(f (ζ−n))

f (ζ )
. Using

this approximation in n − 1 iterations, as well as (5) we obtain the approximation

f

(
ζ + C

f (ζ )

)
= S−1

(
f (ζ − 1) + Cf ′(ζ − 1)

f (ζ )

)

and using (6.9), (4) follows. Similar approximations might be derived for the derivatives. �

Appendix 3: Stability of Some Convolution Operators

In this Appendix we study the stability properties of the operators associated to times τ of
order one in (3.139) and (3.150). To this end, we use the fact that the dominant operators in
this time scale are convolution operators that can be studied using Laplace transforms.

7.1 Stability for the Transition Problem

Using the time variable τ = f (ζ̄ +1) we can transform (3.139), neglecting some small terms
that are introduced in the error term as

1

(α − 1)2

d2λ(τ)

dτ 2
− �′(−Fint(α))

dλ(τ)

dτ
+ �′′(−Fint(α))λ(τ )

−
∫ τ

τ0

�′′′(s − τ − Fint(α))λ(s)ds + H(τ)

= O

(
1

(f (ζ̄ ))α

)
:= r(τ ), (7.1)

where H(τ) contains the contribution of the term
∫ ζ̄+δ1(ζ̄ )

ζ0
f ′(ζ )� ′′′(f (ζ ) − f (ζ̄ ))λ(ζ )dζ

that might be approximated to the leading order as Cλ(S(τ)). Therefore, this term varies,
for τ → ∞ in a longer time scale that the other terms in (7.1) and, as a consequence, if the
convolution part of the operator can be shown to yield convergence, it would be possible to
approximate (3.139) as (3.133). Taking the Laplace transform of (7.1) that we define as

f̃ (z) =
∫ ∞

0
f (τ)e−τzdτ

we obtain

λ̃(z) = H̃ (z) + r̃(z) + C1z + C2

z2

(α−1)2 − �′(−Fint(α))z + �′′(−Fint(α)) − ω(z)
,
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where

ω(z,α) =
∫ ∞

0
�′′′(−τ − Fint(α))e−τzdτ.

Standard properties of the Laplace transform would show that the solutions of (7.1) ap-
proach to a constant value for 1 � τ if the function

�(z,α) = z2

(α − 1)2
− �′(−Fint(α))z + �′′(−Fint(α)) − ω(z,α)

does not have zeroes in the half-plane {Re(z) > 0}. (A similar argument, in a fully rigorous
manner can be found in [12]). We have studied the zeroes of the function �(z) using the
argument principle for the particular value α = 1

2 . After some computations the function
�(z; 1

2 ) becomes:

�

(
z; 1

2

)
= 4.0z2 + 1.9024z + 0.23968 − 2ezFint(α)I (z),

where

Fint(α) = Fint

(
1

2

)
= 1.6622

and

I (z) =
∫ 1

( 1
2 )1/3

(−4 − 17Y + 12Y 6 − 29Y 3 − 45Y 2 + 60Y 5 + 68Y 4)

(Y 2 + Y + 1)5Y 3

× exp

(
−z

(
4

3
log

(
1 + Y

2

)
− Y

(Y − 1)
+ 5

3
log(1 − Y )

))
dY.

In Figs. 1, 2 we describe the image of a contour surrounding the half-plane {Re(z) > 0} for
a large value of R → ∞ and its image by means of this function. More precisely, Fig. 2
contains the image of the vertical segment [0,10i] by the function �(z; 1

2 ). The second
picture provides a detail of the same curve near the origin. On the other hand Fig. 3 shows
the image of the quarter of a circle 10eiθ , θ ∈ [0, π

2 ] by means of �(z; 1
2 ). The second picture

Fig. 2 The image by � of the positive imaginary axis
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Fig. 3 The image by � of the portion of a big circle in the first quadrant

provides a detail of this curve for large values of |z|. The image by means of �(z; 1
2 ) of the

segment [−10i,0] and the half-circle 10eiθ , θ ∈ [− π
2 ,0] can be obtained by reflection with

respect to the real axis, since (�(z; 1
2 ))∗ = �(z∗; 1

2 ). It follows from these pictures that the
image by means of �(z; 1

2 ) of the curve [−10i,10i] ∪ {z = 10eiθ : θ ∈ [ π
2 ,− π

2 ]} does not
surround the origin, and therefore, the argument principle implies that there are not zeroes
of �(z; 1

2 ) in the half-plane {Re(z) ≥ 0}. This yields the desired stability.

7.2 Stability for the Linearized LSW Model

In the case of the linearization of the whole LSW model the study can be made in a similar
manner. Using the time variable τ , (3.150) becomes, neglecting the smallest terms

(∫ 1

0

e−Fint(W)dW

(W − 1)2

)
d2λ(τ)

dτ 2
−

(∫ 1

0
e−Fint(W)�′(−Fint(W))dW

)
dλ(τ)

dτ

+
(∫ 1

0
e−Fint(W)�′′(−Fint(W))dW

)
λ(τ)

−
∫ τ

τ0

[∫ 1

0
e−Fint(W)�′′′(s − τ − Fint(W))dW

]
λ(s)ds + H(τ) + r(τ ), (7.2)

where as in (7.1), r(τ ) converges to zero and H(τ) varies slowly in the time scale S(τ).

Equation (7.2) can be studied similarly to (7.1) using Laplace transforms. The stability
properties of the convolution operator (including the derivatives) reduces then to prove that
the function

�(z) =
∫ 1

0
�(z,W)e−Fint(W)dW

does not have zeroes in the half-plane {Re(z) > 0}. This property can be shown exactly
as in the previous Subsection using the argument principle. Figure 4 shows the image of
the segment [0,10i]. The second picture provides a detail of the region close to the origin.
Figure 5 shows the image by � of the quarter of a circle 10eiθ , θ ∈ [0, π

2 ]. The second
picture gives a detail of the region or large values of |z|.
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Fig. 4 The image by � of the positive imaginary axis

Fig. 5 The image by � of the portion of a big circle in the first quadrant
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